OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 53, Iss. 3 — Jan. 20, 2014
  • pp: 335–340

Resolution characteristics for reflection-mode exponential-doping GaN photocathode

Honggang Wang, Yunsheng Qian, Yujie Du, Yuan Xu, Liubing Lu, and Benkang Chang  »View Author Affiliations

Applied Optics, Vol. 53, Issue 3, pp. 335-340 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (440 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



According to the expression for modulation transfer function obtained by solving the established 2D continuity equation, the resolution characteristics for reflection-mode exponential-doping and uniform-doping GaN photocathodes have been calculated and comparatively analyzed. These calculated results show that the exponential-doping structure can upgrade not only the resolution capability but also the quantum efficiency for a GaN photocathode. The improvement mechanism is different from the approach for high resolution applied by reducing Te and LD or increasing SV, which leads to low quantum efficiency. The main contribution factor of this improvement is that the mechanism that transports electrons toward the NEA surface is facilitated by the built-in electric field formed by this exponential-doping structure, and the corresponding lateral diffusion is reduced.

© 2014 Optical Society of America

OCIS Codes
(110.4100) Imaging systems : Modulation transfer function
(160.2100) Materials : Electro-optical materials
(160.6000) Materials : Semiconductor materials
(250.0040) Optoelectronics : Detectors

ToC Category:

Original Manuscript: December 11, 2013
Manuscript Accepted: December 22, 2013
Published: January 20, 2014

Honggang Wang, Yunsheng Qian, Yujie Du, Yuan Xu, Liubing Lu, and Benkang Chang, "Resolution characteristics for reflection-mode exponential-doping GaN photocathode," Appl. Opt. 53, 335-340 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. H. Sommer, Photoelectric Materials-Preparation, Properties and Uses (Science, 1968).
  2. W. Klein, M. Harder, and H. Pollehn, “Influence of backscattered electrons on the resolution of transmission secondary electron emitters,” Appl. Opt. 11, 2337–2339 (1972). [CrossRef]
  3. M. B. Allenson, P. G. R. King, M. C. Rowland, G. J. Steward, and C. H. A. Syms, “An improved GaAs transmission photocathode,” J. Phys. D 5, L89–L92 (1972). [CrossRef]
  4. R. L. Bell, Negative Electron Affinity Devices (Science, 1973).
  5. H. R. Hughes, E. D. Savoye, and D. L. Thoman, “Application of negative electron affinity materials to imaging devices,” J. Electron. Mater. 3, 9–23 (1974). [CrossRef]
  6. R. U. Martinelli and D. G. Fisher, “The application of semiconductors with negative electron affinity surfaces to electron emission devices,” Proc. SPIE 62, 1339–1360 (1974).
  7. I. P. Csorba, “Recent advancements in the field of image intensification: the generation 3 wafer tube,” Appl. Opt. 18, 2440–2444 (1979). [CrossRef]
  8. H. K. Pollehn, “Performance and reliability of third-generation image intensifiers,” in Advances in Electronics and Electron Physics, P. W. Hawkes, ed. (Academic, 1985), pp. 61–69.
  9. E. J. Bender, J. P. Estrera, C. E. Ford, A. Giordana, J. W. Glesener, P. P. Lin, A. J. Nico, T. W. Sinor, and R. H. Smithson, “High reliability GaAs image intensifier with unfilmed microchannel plate,” Proc. SPIE 3749, 713–714 (1999). [CrossRef]
  10. J. T. Xu, L. Yan, Y. J. Chang, K. Y. Han, B. B. Liu, and T. M. Zhang, “Mechanism analysis of Gen III LLL Image Intensifier GaAs cathode photoelectric emission disability,” Proc. SPIE 8912, 891213 (2013). [CrossRef]
  11. C. B. Johnson and K. L. Hallam, “An electron-lens for opaque photocathodes,” Proc. SPIE 32, 53–56 (1973).
  12. H. L. Palmer, N. J. Koda, and J. H. Dinan, “Image converter with III-V compound reflective mode photocathode,” Proc. SPIE 42, 31–34 (1974). [CrossRef]
  13. A. S. Tremsin, J. S. Hull, O. H. W. Siegmund, J. B. McPhate, J. V. Vallerga, A. M. Dabiran, A. Mane, and J. Elam, “Opaque gallium nitride photocathodes in UV imaging detectors with microchannel plates,” Proc. SPIE 8859, 88590X (2013). [CrossRef]
  14. X. H. Wang, B. K. Chang, L. Ren, and P. Gao, “Influence of the p-type doping concentration on reflection-mode GaN photocathode,” Appl. Phys. Lett. 98, 082109 (2011). [CrossRef]
  15. Y. J. Zhang, J. J. Zou, J. Niu, J. Zhao, and B. K. Chang, “Photoemission characteristics of different-structure reflection-mode GaAs photocathodes,” J. Appl. Phys. 110, 063113 (2011). [CrossRef]
  16. X. L. Chen, Y. J. Zhang, B. K. Chang, J. Zhao, M. C. Jin, G. H. Hao, and Y. Xu, “Research on quantum efficiency of reflection-mode GaAs photocathode with thin emission layer,” Opt. Commun. 287, 35–39 (2013). [CrossRef]
  17. J. T. Fu, G. Q. Zheng, and S. C. Zhang, “Study on the influence of recombination velocity to quantum efficiency of reflection-mode GaAs photocathode,” Optik 124, 1862–1864 (2013). [CrossRef]
  18. J. Niu, Z. Yang, and B. K. Chang, “Equivalent method of solving quantum efficiency of reflection-mode exponential doping GaAs photocathode,” Chin. Phys. Lett. 26, 104202 (2009). [CrossRef]
  19. J. L. Qiao, B. K. Chang, X. Q. Du, J. Niu, and J. J. Zou, “Quantum efficiency decay mechanism for reflection-mode negative electron affinity GaN photocathode,” Acta Phys. Sin. 59, 2855–2859 (2010) (in Chinese).
  20. J. L. Qiao, B. K. Chang, Y. S. Qian, X. Q. Du, X. H. Wang, and X. Y. Guo, “Quantum efficiency recovery of reflection-mode NEA GaN photocathode,” Acta Phys. Sin. 60, 017903 (2011) (in Chinese).
  21. J. Niu, Y. J. Zhang, B. K. Chang, Z. Yang, and Y. J. Xiong, “Influence of exponential doping structure on the performance of GaAs photocathodes,” Appl. Opt. 48, 5445–5450 (2009). [CrossRef]
  22. J. J. Zou, G. Y. Lin, X. Wei, L. Feng, Z. Yang, and B. K. Chang, “Activation experiment of exponential-doping NEA GaAs photocathodes,” Proc. SPIE 7384, 7384L (2009).
  23. Y. J. Zhang, J. Niu, J. J. Zou, B. K. Chang, and Y. J. Xiong, “Variation of spectral response for exponential-doped transmission-mode GaAs photocathodes in the preparation process,” Appl. Opt. 49, 3935–3940 (2010). [CrossRef]
  24. Y. J. Zhang, J. Niu, J. Zhao, J. J. Zou, B. K. Chang, F. Shi, and H. C. Cheng, “Influence of exponential-doping structure on photoemission capability of transmission-mode GaAs photocathodes,” J. Appl. Phys. 108, 093108 (2010). [CrossRef]
  25. X. Q. Fu, X. H. Wang, Y. F. Yang, B. K. Chang, Y. J. Du, J. J. Zhang, and R. G. Fu, “Optimizing GaN photocathode structure for higher quantum efficiency,” Optik 123, 765–768 (2012). [CrossRef]
  26. I. P. Csorba, “Modulation transfer function of image tube lenses,” Appl. Opt. 16, 2647–2650 (1977). [CrossRef]
  27. D. G. Fisher and R. U. Martinelli, “Negative electron affinity materials for imaging devices,” Adv. Image Pick. Disp. 1, 101–106 (1974).
  28. X. H. Wang, “Photoemission performance of wurtzite structure GaN (0001) surface,” Ph.D. thesis (Nanjing University of Science & Technology, 2013), p. 51.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited