OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 53, Iss. 4 — Feb. 1, 2014
  • pp: A412–A416

Scattering losses in multidielectric structures designed for giant optical field enhancement

Aude L. Lereu, Myriam Zerrad, Césaire Ndiaye, Fabien Lemarchand, and Claude Amra  »View Author Affiliations


Applied Optics, Vol. 53, Issue 4, pp. A412-A416 (2014)
http://dx.doi.org/10.1364/AO.53.00A412


View Full Text Article

Enhanced HTML    Acrobat PDF (327 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Multidielectric coatings are analytically designed to reach total absorption and maximum field enhancement at resonances. A resonant multi-dielectric stack was fabricated to be resonant at 633 nm for an incidence of 45° under TE-polarization. Field enhancement was expected to be around 1000. We discuss the mismatch with the enhancement measured using near field microscopy and using the scattering effect. In particular, scattering was investigated to serve as a far field characterization of such giant optical fields.

© 2014 Optical Society of America

OCIS Codes
(120.0120) Instrumentation, measurement, and metrology : Instrumentation, measurement, and metrology
(310.6860) Thin films : Thin films, optical properties
(290.1483) Scattering : BSDF, BRDF, and BTDF
(310.4165) Thin films : Multilayer design

History
Original Manuscript: September 9, 2013
Revised Manuscript: January 7, 2014
Manuscript Accepted: January 8, 2014
Published: January 28, 2014

Citation
Aude L. Lereu, Myriam Zerrad, Césaire Ndiaye, Fabien Lemarchand, and Claude Amra, "Scattering losses in multidielectric structures designed for giant optical field enhancement," Appl. Opt. 53, A412-A416 (2014)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-53-4-A412


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. H. Iwase, D. Englund, and J. Vuckovic, “Analysis of the Purcell effect in photonic and plasmonic crystals with losses,” Opt. Express 18, 16546–16560 (2010). [CrossRef]
  2. Z. Jacob, I. Smolyaninov, and E. E. Narimanov, “Broadband Purcell effect in hyperbolic metamaterials,” in Quantum Electronics and Laser Science Conference, OSA Technical Digest (Optical Society of America, 2010), paper QWB2.
  3. J.-M. Lourtioz, H. Benisty, V. Berger, D. Pagnoux, J.-M. Gerard, D. Maystre, and A. Tchelnokov, Photonic Crystals: Towards Nanoscale Photonic Devices, 2nd ed. (Springer, 2008).
  4. F. Lemarchand, A. Sentenac, and H. Giovannini, “Increasing the angular tolerance of resonant grating filters with doubly periodic structures,” Opt. Lett. 23, 1149–1151 (1998). [CrossRef]
  5. M. Lequime, “Spectral properties of planar multilayer microcavities,” in Frontiers of Optical Coatings, China, 2009, invited paper.
  6. H. A. Macleod, Thin-Film Optical Filters, 3rd ed. (Institute of Physics, 2001).
  7. C. Amra and S. Maure, “Mutual coherence and conical pattern of sources optimally excited within multilayer optics,” J. Opt. Soc. Am. A 14, 3114–3124 (1997). [CrossRef]
  8. W. A. Challener, J. D. Edwards, R. W. McGowan, J. Skorjanec, and Z. Yang, “A multilayer grating-based evanescent wave sensing technique,” Sens. Actuators B Chem. 71, 42–46 (2000). [CrossRef]
  9. M. Ballarini, F. Frascella, F. Michelotti, G. Digregorio, P. Rivolo, V. Paeder, V. Musi, F. Giorgis, and E. Descrovi, “Bloch surface waves-controlled emission of organic dyes grafted on a one dimensional photonic crystal,” Appl. Phys. Lett. 99, 043302 (2011). [CrossRef]
  10. M. Ballarini, F. Frascella, E. Enrico, P. Mandracci, N. De Leo, F. Michelotti, F. Giorgis, and E. Descrovi, “Bloch surface waves-controlled fluorescence emission: coupling into nanometer-sized polymeric waveguides,” Appl. Phys. Lett. 100, 063305 (2012). [CrossRef]
  11. S. Pirotta, X. G. Xu, A. Delfan, S. Mysore, S. Maiti, G. Dacarro, M. Patrini, M. Galli, G. Guizzetti, D. Bajoni, J. E. Sipe, G. C. Walker, and M. Liscidini, “Surface-enhanced Raman scattering in purely dielectric structures via Bloch surface waves,” J. Phys. Chem. C 117, 6821–6825 (2013). [CrossRef]
  12. K. Toma, E. Descrovi, M. Toma, M. Ballarini, P. Mandracci, F. Giorgis, A. Mateescu, U. Jonas, W. Knoll, and J. Dostalek, “Bloch surface wave-enhanced fluorescence biosensor,” Biosens. Bioelectron. 43, 108–114 (2013). [CrossRef]
  13. F. Frascella, S. Ricciardi, P. Rivolo, V. Moi, F. Giorgis, E. Descrovi, F. Michelotti, P. Munzert, N. Danz, L. Napione, M. Alvaro, and F. Bussolino, “A fluorescent one-dimensional photonic crystal for label-free biosensing based on Bloch surface waves,” Sensors 13, 2011–2022 (2013). [CrossRef]
  14. R. H. Ritchie, “Plasma losses by fast electrons in thin films,” Phys. Rev. 106, 874–881 (1957). [CrossRef]
  15. T. L. Ferrell, T. A. Callcott, and R. J. Warmack, “Plasmons and surfaces,” Am. Sci. 73, 344–353 (1985).
  16. S. A. Maier and H. A. Atwater, “Plasmonics: localization and guiding of electromagnetic energy in metal/dielectric structures,” J. Appl. Phys. 98, 011101 (2005). [CrossRef]
  17. D. Brissinger, A. L. Lereu, L. Salomon, T. Charvolin, B. Cluzel, C. Dumas, A. Passian, and F. de Fornel, “Discontinuity induced angular distribution of photon plasmon coupling,” Opt. Express 19, 17750–17757 (2011). [CrossRef]
  18. R. C. Nesnidal and T. G. Walker, “Multilayer dielectric structure for enhancement of evanescent waves,” Appl. Opt. 35, 2226–2229 (1996). [CrossRef]
  19. C. Ndiaye, F. Lemarchand, M. Zerrad, D. Ausserr, and C. Amra, “Optimal design for 100% absorption and maximum field enhancement in thin film multilayers at resonances under total reflection,” Appl. Opt. 50, C382–C387 (2011). [CrossRef]
  20. C. Amra, C. Ndiaye, M. Zerrad, and F. Lemarchand, “Optimal design for field enhancement in optical coatings,” Proc. SPIE 8168, 816808 (2011), invited paper.
  21. Y. A. Pirogov and A. V. Tikhonravov, “Multilayer interference absorber with arbitrary thickness of working layer,” Moscow Univ. Phys. Bull 19, 42–48 (1978) (in Russian).
  22. V. Tikhonravov and Y. A. Pirogov, “Multilayer interference absorber with taking into account of losses in non-working layers,” J. Technicheskoi Fiziki 50, 673–679 (1980) (in Russian).
  23. F. Brettenaker and N. Treps, Introduction à: Le Laser, Chap. 3, 78–81 (2010).
  24. J. Massaneda, F. Flory, and E. Pelletier, “Determination of the refractive indices of layers in a multilayer stack by a guided-wave technique,” Appl. Opt. 38, 4177–4181 (1999). [CrossRef]
  25. C. Ndiaye, M. Zerrad, A. L. Lereu, R. Roche, Ph. Dumas, F. Lemarchand, and C. Amra, “Giant optical field enhancement in multi-dielectric stacks by photon scanning tunneling microscopy,” Appl. Phys. Lett. 103, 131102 (2013). [CrossRef]
  26. A. Passian, A. Wig, A. L. Lereu, F. Meriaudeau, T. Thundat, and T. L. Ferrell, “Photon tunneling via surface plasmon coupling,” Appl. Phys. Lett. 85, 3420–3422 (2004). [CrossRef]
  27. A. Passian, A. Wig, A. L. Lereu, P. G. Evans, F. Meriaudeau, T. Thundat, and T. L. Ferrell, “Probing large area surface plasmon interference in thin metal films using photon scanning tunneling microscopy,” Ultramicroscopy 100, 429–436 (2004). [CrossRef]
  28. A. Passian, A. L. Lereu, A. Wig, F. Meriaudeau, T. Thundat, and T. L. Ferrell, “Imaging standing surface plasmons by photon tunneling,” Phys. Rev. B 71, 165418 (2005). [CrossRef]
  29. E. Descrovi, T. Sfez, L. Dominici, W. Nakagawa, F. Michelotti, F. Giorgis, and H.-P. Herzig, “Near-field imaging of Bloch surface waves on silicon nitride one-dimensional photonic crystals,” Opt. Express 16, 5453–5464 (2008). [CrossRef]
  30. P. K. Tien and R. Ulrich, “Theory of prism-film coupler and thin-film light guides,” J. Opt. Soc. Am. 60, 1325–1337 (1970). [CrossRef]
  31. C. Ndiaye, “Exaltation optique gante dans les filtres interfrentiels: Modlisation, optimisation et ralisation,” Ph.D. dissertation (École Centrale de Marseille, 2012).
  32. M. Zerrad, C. Ndiaye, A. L. Lereu, and C. Amra, “Bandwidths limitations of giant optical field enhancements,” Phys. Rev. B (2014), to be published.
  33. C. Amra, D. Torricini, and P. Roche, “Multiwavelength (0.45-10.6-MU-M) angle-resolved scatterometer or how to extend the optical window,” Appl. Opt. 32, 5462–5474 (1993). [CrossRef]
  34. M. Zerrad and M. Lequime, “Instantaneous spatially resolved acquisition of polarimetric and angular scattering properties in optical coatings,” Appl. Opt. 50, C217–C221 (2011). [CrossRef]
  35. M. Zerrad, M. Lequime, and C. Amra, “Multimodal scattering facilities and modelization tools for a comprehensive investigation of optical coatings,” Proc. SPIE 8169, 81690K (2011), invited paper.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited