OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 53, Iss. 5 — Feb. 10, 2014
  • pp: 798–805

Improved data pages for an interference-based cryptosystem

Tamás Sarkadi and Pál Koppa  »View Author Affiliations

Applied Optics, Vol. 53, Issue 5, pp. 798-805 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (750 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In this paper, we propose a novel input wave front modulation method to enhance the security level of a Mach–Zender interferometer-based Fourier encryption system. The input data is encoded in the two wave fronts propagated in the arms of the interferometer. Both arms contain a 4f setup, and two independent Fourier keys are used to encrypt these wave fronts. During decryption the encrypted wave fronts are propagated through the interferometer. In the case when correct Fourier keys are used for decryption, the reconstructed data page is shown by the interference pattern of the output. We propose a method to synthesize two phase modulated input images for this cryptosystem. The modulation method has a user defined phase parameter. We prove that the security level of the proposed cryptosystem can be significantly improved compared with previous solutions, by using an optimally chosen phase parameter.

© 2014 Optical Society of America

OCIS Codes
(200.4560) Optics in computing : Optical data processing
(210.1635) Optical data storage : Coding for optical storage

ToC Category:
Optics in Computing

Original Manuscript: October 22, 2013
Revised Manuscript: December 23, 2013
Manuscript Accepted: January 2, 2014
Published: February 4, 2014

Tamás Sarkadi and Pál Koppa, "Improved data pages for an interference-based cryptosystem," Appl. Opt. 53, 798-805 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. O. Matoba and B. Javidi, “Encrypted optical storage with angular multiplexing,” Appl. Opt. 38, 7288–7293 (1999). [CrossRef]
  2. X. D. Tan, O. Matoba, T. Shimura, K. Kuroda, and B. Javidi, “Secure optical storage that uses fully phase encryption,” Appl. Opt. 39, 6689–6694 (2000). [CrossRef]
  3. H. Tashima, M. Takeda, H. Suzuki, T. Obi, M. Yamaguchi, and N. Ohyama, “Known plaintext attack on double random phase encoding using fingerprint as key and a method for avoiding the attack,” Opt. Express 18, 13772–13781 (2010). [CrossRef]
  4. H. Suzuki, M. Yamaguchi, M. Yachida, and N. Ohyama, “Experimental evaluation of fingerprint verification system based on double random phase encoding,” Opt. Express 14, 1755–1766 (2006). [CrossRef]
  5. P. Refregier and B. Javidi, “Optical-image encryption based on input plane and Fourier plane random encoding,” Opt. Lett. 20, 767–769 (1995). [CrossRef]
  6. U. Gopinathan, D. S. Monaghan, T. J. Naughton, and J. T. Sheridan, “A known-plaintext heuristic attack on the Fourier plane encryption algorithm,” Opt. Express 14, 3181–3186 (2006). [CrossRef]
  7. G. Situ, U. Gopinathan, D. S. Monaghan, and J. T. Sheridan, “Cryptanalysis of optical security systems with significant output images,” Appl. Opt. 46, 5257–5262 (2007). [CrossRef]
  8. D. S. Monaghan, G. Situ, U. Gopinathan, T. J. Naughton, and J. T. Sheridan, “Role of phase key in the double random phase encoding technique: an error analysis,” Appl. Opt. 47, 3808–3816 (2008). [CrossRef]
  9. X. Peng, P. Zhang, H. Wei, and B. Yu, “Known plaintext attack on optical encryption based on double random phase keys,” Opt. Lett. 31, 1044–1046 (2006). [CrossRef]
  10. T. Ujvari, P. Koppa, M. Lovasz, P. Varhegyi, S. Sajti, E. Lorincz, and P. Richter, “A secure data storage system based on phase-encoded thin polarization holograms,” J. Opt. A 6, 401–411 (2004). [CrossRef]
  11. P. Kumar, J. Joseph, and K. Singh, “Impulse attack-free four random phase mask encryption based on a 4f optical system,” Appl. Opt. 48, 2356–2363 (2009). [CrossRef]
  12. X. C. Cheng, L. Z. Cai, Y. R. Wang, X. F. Meng, H. Zhang, X. F. Xu, X. X. Shen, and G. Y. Dong, “Security enhancement of double-random phase encryption by amplitude modulation,” Opt. Lett. 33, 1575–1577 (2008). [CrossRef]
  13. T. Sarkadi and P. Koppa, “Quantitative security evaluation of optical encryption using hybrid phase- and amplitude-modulated keys,” Appl. Opt. 51, 745–750 (2012). [CrossRef]
  14. Z. Liu, S. Li, M. Yang, W. Liu, and S. Liu, “Image encryption based on the random rotation operation in the fractional Fourier-transform domains,” Opt. Lasers Eng. 50, 1352–1358 (2012). [CrossRef]
  15. M. Joshi, C. Shakher, and K. Singh, “Fractional Fourier transform based image multiplexing and encryption technique for four-color images using input images as keys,” Opt. Commun. 283, 2496–2505 (2010). [CrossRef]
  16. Z. Liu, S. L. Xu, C. Lin, J. Dai, and S. Liu, “Image encryption scheme by using iterative random phase encoding in gyrator transform domains,” Opt. Lasers Eng. 49, 542–546 (2011). [CrossRef]
  17. Y. Zhang and B. Wang, “Optical image encryption based on interference,” Opt. Lett. 33, 2443–2445 (2008). [CrossRef]
  18. N. Zhu, Y. Wang, J. Liu, J. Xie, and H. Zhang, “Optical image encryption based on interference of polarized light,” Opt. Express 17, 13418–13424 (2009). [CrossRef]
  19. B. Yao, Z. Ren, N. Menke, Y. Wang, Y. Zheng, M. Lei, G. Chen, and N. Hampp, “Polarization holographic high-density optical data storage in bacteriorhodopsin film,” Appl. Opt. 44, 7344–7348 (2005). [CrossRef]
  20. X. Tan, O. Matoba, Y. Okada-Shudo, M. Ide, T. Shimura, and K. Kuroda, “Secure optical memory system with polarization encryption,” Appl. Opt. 40, 2310–2315 (2001). [CrossRef]
  21. M. S. Mahmud, I. Naydenova, and V. Toal, “Implementation of phase-only modulation utilizing a twisted nematic liquid crystal spatial light modulator,” J. Opt. A 10, 085007 (2008). [CrossRef]
  22. J. Joseph and D. A. Waldman, “Homogenized Fourier-transform holographic data storage using phase spatial light modulators and methods for recovery of data from the phase image,” Appl. Opt. 45, 6374–6380 (2006). [CrossRef]
  23. P. Koppa, “Phase-to-amplitude data page conversion for holographic storage and optical encryption,” Appl. Opt. 46, 3561–3571 (2007). [CrossRef]
  24. T. Sarkadi and P. Koppa, “Optical encryption using pseudorandom complex spatial modulation,” Appl. Opt. 51, 8068–8073 (2012). [CrossRef]
  25. J. C. Dainty, Laser Speckle and Related Phenomena (Springer, 1975).
  26. H. J. Coufal, D. Psaltis, and G. T. Sincerbox, Holographic Data Storage (Springer, 2000).
  27. S. B. Wicker and V. K. Bhargava, Reed Solomon Codes and their Applications (IEEE, 1999).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited