Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Generalized numerical pressure distribution model for smoothing polishing of irregular midspatial frequency errors

Not Accessible

Your library or personal account may give you access

Abstract

The smoothing effect of the rigid lap plays an important role in controlling midspatial frequency errors (MSFRs). At present, the pressure distribution between the polishing pad and processed surface is mainly calculated by Mehta’s bridging model. However, this classic model does not work for the irregular MSFR. In this paper, a generalized numerical model based on the finite element method (FEM) is proposed to solve this problem. First, the smoothing polishing (SP) process is transformed to a 3D elastic structural FEM model, and the governing matrix equation is gained. By virtue of the boundary conditions applied to the governing matrix equation, the nodal displacement vector and nodal force vector of the pad can be attained, from which the pressure distribution can be extracted. In the partial contact condition, the iterative method is needed. The algorithmic routine is shown, and the applicability of the generalized numerical model is discussed. The detailed simulation is given when the lap is in contact with the irregular surface of different morphologies. A well-designed SP experiment is conducted in our lab to verify the model. A small difference between the experimental data and simulated result shows that the model is totally practicable. The generalized numerical model is applied on a Φ500mm parabolic surface. The calculated result and measured data after the SP process have been compared, which indicates that the model established in this paper is an effective method to predict the SP process.

© 2014 Optical Society of America

Full Article  |  PDF Article
More Like This
Control of mid-spatial frequency errors considering the pad groove feature in smoothing polishing process

Xuqing Nie, Shengyi Li, Hao Hu, and Qi Li
Appl. Opt. 53(28) 6332-6339 (2014)

Correlation-based smoothing model for optical polishing

Yong Shu, Dae Wook Kim, Hubert M. Martin, and James H. Burge
Opt. Express 21(23) 28771-28782 (2013)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (12)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (2)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (9)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.