OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 53, Iss. 6 — Feb. 20, 2014
  • pp: 1028–1032

Trench-embedding fiber taper sensor fabricated by a femtosecond laser for gas refractive index sensing

Zhitao Cao, Lan Jiang, Sumei Wang, Peng Wang, Fei Zhang, and Yongfeng Lu  »View Author Affiliations


Applied Optics, Vol. 53, Issue 6, pp. 1028-1032 (2014)
http://dx.doi.org/10.1364/AO.53.001028


View Full Text Article

Enhanced HTML    Acrobat PDF (530 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A fiber in-line, multimode coupling interferometer with a trench-embedding, fiber taper probe is proposed and fabricated by femtosecond-laser-induced water breakdown. The reflection-type taper probe is used for gas refractive index (RI) detection from 1.0001143 to 1.0002187 and temperature sensing from 50°C to 500°C. The largest RI sensitivity of the taper probe embedded with a trench at a width of 18.4 μm is 669.502nm/RIU for hybrid nitrogen and helium. Temperature sensitivity is 9.97pm/°C and it shows good linearity through the whole testing range. The new-type multimode interferometer is appropriate for high-accuracy gas RI detection of micrometer-scale spaces and wide-range temperature compensation can be realized.

© 2014 Optical Society of America

OCIS Codes
(060.2280) Fiber optics and optical communications : Fiber design and fabrication
(060.2370) Fiber optics and optical communications : Fiber optics sensors
(220.4610) Optical design and fabrication : Optical fabrication

ToC Category:
Instrumentation, Measurement, and Metrology

History
Original Manuscript: September 17, 2013
Revised Manuscript: January 6, 2014
Manuscript Accepted: January 7, 2014
Published: February 12, 2014

Citation
Zhitao Cao, Lan Jiang, Sumei Wang, Peng Wang, Fei Zhang, and Yongfeng Lu, "Trench-embedding fiber taper sensor fabricated by a femtosecond laser for gas refractive index sensing," Appl. Opt. 53, 1028-1032 (2014)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-53-6-1028


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. L. Jiang and H. L. Tsai, “Plasma modeling for ultrashort pulse laser ablation of dielectrics,” J. Appl. Phys. 100, 023116 (2006). [CrossRef]
  2. A. P. Zhang, L. Y. Shao, J. F. Ding, and S. L. He, “Sandwiched long-period gratings for simultaneous measurement of refractive index and temperature,” IEEE Photon. Technol. Lett. 17, 2397–2399 (2005). [CrossRef]
  3. S. W. James and R. P. Tatam, “Optical fibre long-period grating sensors: characteristics and application,” Meas. Sci. Technol. 14, R49–R61 (2003). [CrossRef]
  4. T. Allsop, R. Reeves, D. J. Webb, I. Bennion, and R. Neal, “A high sensitivity refractometer based upon a long period grating Mach–Zehnder interferometer,” Rev. Sci. Instrum. 73, 1702–1705 (2002). [CrossRef]
  5. N. M. Hanumegowda, C. J. Stica, B. C. Patel, I. White, and X. Fan, “Refractometric sensors based on microsphere resonators,” Appl. Phys. Lett. 87, 201107 (2005). [CrossRef]
  6. T. Loppolo, M. Kozhevnikov, V. Stepaniuk, M. V. Otugen, and V. Sheverev, “Micro-optical force sensor concept based on whispering gallery mode resonators,” Appl. Opt. 47, 3009–3014 (2008). [CrossRef]
  7. B. Dong, D. P. Zhou, and L. Wei, “Temperature insensitive all-fiber compact polarization-maintaining photonic crystal fiber based interferometer and its applications in fiber sensors,” J. Lightwave Technol. 28, 1011–1015 (2010). [CrossRef]
  8. X. Bevenot, A. Trouillet, C. Veillas, H. Gagnaire, and M. Clement, “Surface plasmon resonance hydrogen sensor using an optical fibre,” Meas. Sci. Technol. 13, 118–124 (2002). [CrossRef]
  9. X. G. Wang, Y. K. Tang, C. D. Zhou, and B. Liao, “Design and optimization of the optical fiber surface plasmon resonance hydrogen sensor based on wavelength modulation,” Opt. Commun. 298–299, 88–94 (2013). [CrossRef]
  10. R. Mohandoss, S. Dhanuskodi, B. Renganathan, and D. Sastikumar, “Gas sensing property of lithium tetraborate clad modified fiber optic sensor,” Curr. Appl. Phys. 13, 957–963 (2013). [CrossRef]
  11. A. H. Ammar, M. S. Abo-Ghazala, A. A. M. Farag, N. M. Abdel-Moniem, and E. M. Farag, “Effect of gas type, pressure and temperature on the electrical characteristics of Al-doped SnO2 thin films deposited by RGTO method for gas sensor application,” Vacuum 94, 30–40 (2013). [CrossRef]
  12. S. Some, Y. Xu, Y. Kim, Y. Yoon, H. Qin, A. Kulkarni, T. Kim, and H. Lee, “Highly sensitive and selective gas sensor using hydrophilic and hydrophobic grapheme,” Sci. Rep. 3, 1868 (2013).
  13. R. J. Westerwaal, J. S. A. Rooijmans, L. Leclercq, D. G. Gheorghe, T. Radeva, L. Mooij, T. Mak, L. Polak, M. Slaman, B. Dam, and Th. Rasing, “Nanostructured Pd–Au based fiber optic sensors for probing hydrogen concentrations in gas mixtures,” Int. J. Hydrogen Energy 38, 4201–4212 (2013). [CrossRef]
  14. L. Jiang, L. Zhao, S. Wang, J. Yang, and H. Xiao, “Femtosecond laser fabricated all-optical fiber sensors with ultrahigh refractive index sensitivity: modeling and experiment,” Opt. Express 19, 17591–17598 (2011). [CrossRef]
  15. Y. Liu, S. L. Qu, and Y. Li, “Single microchannel high-temperature fiber sensor by femtosecond laser-induced water breakdown,” Opt. Lett. 38, 335–337 (2013). [CrossRef]
  16. T. Wei, Y. K. Han, H. L. Tsai, and H. Xiao, “Miniaturized fiber inline Fabry–Perot interferometer fabricated with a femtosecond laser,” Opt. Lett. 33, 536–538 (2008). [CrossRef]
  17. L. V. Nguyen, D. Hwang, S. Moon, D. S. Moon, and Y. Chung, “High temperature fiber sensor with high sensitivity based on core diameter mismatch,” Opt. Express 16, 11369–11375 (2008). [CrossRef]
  18. B. Dong, L. Wei, and D. P. Zhou, “Miniature high-sensitivity high-temperature fiber sensor with a dispersion compensation fiber-based interferometer,” Appl. Opt. 48, 6466–6469 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited