OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 53, Iss. 8 — Mar. 10, 2014
  • pp: 1674–1682

Nonlinear optical security system based on a joint transform correlator in the Fresnel domain

Juan M. Vilardy, María S. Millán, and Elisabet Pérez-Cabré  »View Author Affiliations


Applied Optics, Vol. 53, Issue 8, pp. 1674-1682 (2014)
http://dx.doi.org/10.1364/AO.53.001674


View Full Text Article

Enhanced HTML    Acrobat PDF (825 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A new optical security system for image encryption based on a nonlinear joint transform correlator (JTC) in the Fresnel domain (FrD) is proposed. The proposal of the encryption process is a lensless optical system that produces a real encrypted image and is a simplified version of some previous JTC-based encryption systems. We use a random complex mask as the key in the nonlinear system for the purpose of increasing the security of the encrypted image. In order to retrieve the primary image in the decryption process, a nonlinear operation has to be introduced in the encrypted function. The optical decryption process is implemented through the Fresnel transform and the fractional Fourier transform. The security system proposed in this paper preserves the shift-invariance property of the JTC-based encryption system in the Fourier domain, with respect to the lateral displacement of the key random mask in the decryption process. This system shows an improved resistance to chosen-plaintext and known-plaintext attacks, as they have been proposed in the cryptanalysis of the JTC encrypting system. Numerical simulations show the validity of this new optical security system.

© 2014 Optical Society of America

OCIS Codes
(050.1970) Diffraction and gratings : Diffractive optics
(070.4340) Fourier optics and signal processing : Nonlinear optical signal processing
(070.4550) Fourier optics and signal processing : Correlators
(350.4600) Other areas of optics : Optical engineering
(070.2575) Fourier optics and signal processing : Fractional Fourier transforms

ToC Category:
Fourier Optics and Signal Processing

History
Original Manuscript: November 14, 2013
Revised Manuscript: January 29, 2014
Manuscript Accepted: January 31, 2014
Published: March 10, 2014

Citation
Juan M. Vilardy, María S. Millán, and Elisabet Pérez-Cabré, "Nonlinear optical security system based on a joint transform correlator in the Fresnel domain," Appl. Opt. 53, 1674-1682 (2014)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-53-8-1674


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. S. Millán and E. Pérez-Cabré, “Optical data encryption,” Optical and Digital Image Processing: Fundamentals and Applications, G. Cristóbal, P. Schelkens, and H. Thienpont, eds. (Wiley, 2011), pp. 739–767.
  2. P. Réfrégier and B. Javidi, “Optical image encryption based on input plane and Fourier plane random encoding,” Opt. Lett. 20, 767–769 (1995). [CrossRef]
  3. O. Matoba and B. Javidi, “Encrypted optical memory system using three-dimensional keys in the Fresnel domain,” Opt. Lett. 24, 762–764 (1999). [CrossRef]
  4. G. Situ and J. Zhang, “Double random-phase encoding in the Fresnel domain,” Opt. Lett. 29, 1584–1586 (2004). [CrossRef]
  5. B. M. Hennelly and J. T. Sheridan, “Random phase and jigsaw encryption in the Fresnel domain,” Opt. Eng. 43, 2239–2249 (2004). [CrossRef]
  6. G. Situ and J. Zhang, “Multiple-image encryption by wavelength multiplexing,” Opt. Lett. 30, 1306–1308 (2005). [CrossRef]
  7. G. Situ and J. Zhang, “Position multiplexing for multiple-image encryption,” J. Opt. A 8, 391–397 (2006). [CrossRef]
  8. X. F. Meng, L. Z. Cai, Y. R. Wang, X. L. Yang, X. F. Xu, G. Y. Dong, X. X. Shen, H. Zhang, and X. C. Cheng, “Hierarchical image encryption based on cascaded iterative phase retrieval algorithm in the Fresnel domain,” J. Opt. A 9, 1070–1075 (2007). [CrossRef]
  9. P. Kumar, J. Joseph, and K. Singh, “Holographic encryption system in the Fresnel domain with convergent random illumination,” Opt. Eng. 49, 095803 (2010). [CrossRef]
  10. L. Chen and D. Zhao, “Optical color image encryption by wavelength multiplexing and lensless Fresnel transform holograms,” Opt. Express 14, 8552–8560 (2006). [CrossRef]
  11. G. Unnikrishnan, J. Joseph, and K. Singh, “Optical encryption by double-random phase encoding in the fractional Fourier domain,” Opt. Lett. 25, 887–889 (2000). [CrossRef]
  12. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, 1996).
  13. T. Nomura and B. Javidi, “Optical encryption using a joint transform correlator architecture,” Opt. Eng. 39, 2031–2035 (2000). [CrossRef]
  14. E. Rueda, J. F. Barrera, R. Henao, and R. Torroba, “Optical encryption with a reference wave in a joint transform correlator architecture,” Opt. Commun. 282, 3243–3249 (2009). [CrossRef]
  15. J. F. Barrera, M. Tebaldi, C. Ríos, E. Rueda, N. Bolognini, and R. Torroba, “Experimental multiplexing of encrypted movies using a JTC architecture,” Opt. Express 20, 3388–3393 (2012). [CrossRef]
  16. J. Vilardy, M. S. Millán, and E. Pérez-Cabré, “Improved decryption quality and security of a joint transform correlator-based encryption system,” J. Opt. 15, 025401 (2013). [CrossRef]
  17. C.-L. Chen, L.-C. Lin, and C.-J. Cheng, “Design and implementation of an optical joint transform encryption system using complex-encoded key mask,” Opt. Eng. 47, 068201 (2008). [CrossRef]
  18. T. Nomura, S. Mikan, Y. Morimoto, and B. Javidi, “Secure optical data storage with random phase key codes by use of a configuration of a joint transform correlator,” Appl. Opt. 42, 1508–1514 (2003). [CrossRef]
  19. E. Tajahuerce, O. Matoba, S. C. Verrall, and B. Javidi, “Optoelectronic information encryption with phase-shifting interferometry,” Appl. Opt. 39, 2313–2320 (2000). [CrossRef]
  20. X. Shi, D. Zhao, and Y. Huang, “Double images hiding by using joint transform correlator architecture adopting two-step phase-shifting digital holography,” Opt. Commun. 297, 32–37 (2013). [CrossRef]
  21. C. La Mela and C. Iemmi, “Optical encryption using phase-shifting interferometry in a joint transform correlator,” Opt. Lett. 31, 2562–2564 (2006). [CrossRef]
  22. J. Li, T. Zheng, Q.-z. Liu, and R. Li, “Double-image encryption on joint transform correlator using two-step-only quadrature phase-shifting digital holography,” Opt. Commun. 285, 1704–1709 (2012). [CrossRef]
  23. A. Carnicer, M. Montes-Usategui, S. Arcos, and I. Juvells, “Vulnerability to chosen-cyphertext attacks of optical encryption schemes based on double random phase keys,” Opt. Lett. 30, 1644–1646 (2005). [CrossRef]
  24. Y. Frauel, A. Castro, T. J. Naughton, and B. Javidi, “Resistance of the double random phase encryption against various attacks,” Opt. Express 15, 10253–10265 (2007). [CrossRef]
  25. X. Peng, P. Zhang, H. Wei, and B. Yu, “Known-plaintext attack on optical encryption based on double random phase keys,” Opt. Lett. 31, 1044–1046 (2006). [CrossRef]
  26. J. F. Barrera, C. Vargas, M. Tebaldi, and R. Torroba, “Chosen-plaintext attack on a joint transform correlator encrypting system,” Opt. Commun. 283, 3917–3921 (2010). [CrossRef]
  27. J. F. Barrera, C. Vargas, M. Tebaldi, R. Torroba, and N. Bolognini, “Known-plaintext attack on a joint transform correlator encrypting system,” Opt. Lett. 35, 3553–3555 (2010). [CrossRef]
  28. X. Peng, H. Wei, and P. Zhang, “Chosen-plaintext attack on lensless double-random phase encoding in the Fresnel domain,” Opt. Lett. 31, 3261–3263 (2006). [CrossRef]
  29. G. Situ, G. Pedrini, and W. Osten, “Strategy for cryptanalysis of optical encryption in the Fresnel domain,” Appl. Opt. 49, 457–462 (2010). [CrossRef]
  30. H. T. Chang and C.-C. Chen, “Fully phase asymmetric image verification system based on joint transform correlator,” Opt. Express 14, 1458–1467 (2006). [CrossRef]
  31. J. M. Vilardy, M. S. Millán, and E. Pérez-Cabré, “Joint transform correlator-based encryption system using the Fresnel transform and nonlinear filtering,” Proc. SPIE 8785, 87853J (2013). [CrossRef]
  32. H. M. Ozaktas, Z. Zalevsky, and M. A. Kutay, The Fractional Fourier Transform: with Applications in Optics and Signal Processing (Wiley, 2001).
  33. P. Pellat-Finet, “Fresnel diffraction and the fractional-order Fourier transform,” Opt. Lett. 19, 1388–1390 (1994). [CrossRef]
  34. R. C. Gonzalez, R. E. Woods, and S. L. Eddins, Digital Image Processing Using Matlab, 2nd ed. (Gatesmark, 2009).
  35. E. Pérez, K. Chałasińska-Macukow, K. Styczyński, R. Kotyński, and M. S. Millán, “Dual nonlinear correlator based on computer controlled joint transform processor: digital analysis and optical results,” J. Mod. Opt. 44, 1535–1552 (1997). [CrossRef]
  36. E. Pérez, M. S. Millán, and K. Chałasińska-Macukow, “Optical pattern recognition with adjustable sensitivity to shape and texture,” Opt. Commun. 202, 239–255 (2002). [CrossRef]
  37. M. Tebaldi, S. Horrillo, E. Pérez-Cabré, M. S. Millán, D. Amaya, R. Torroba, and N. Bolognini, “Experimental color encryption in a joint transform correlator architecture,” J. Phys. Conf. Ser. 274, 012054 (2011). [CrossRef]
  38. J. A. Rodrigo, T. Alieva, and M. L. Calvo, “Programmable two-dimensional optical fractional Fourier processor,” Opt. Express 17, 4976–4983 (2009). [CrossRef]
  39. W. Liu, G. Yang, and H. Xie, “A hybrid heuristic algorithm to improve known-plaintext attack on Fourier plane encryption,” Opt. Express 17, 13928–13938 (2009). [CrossRef]
  40. M. Nieto-Vesperinas, R. Navarro, and F. J. Fuentes, “Performance of a simulated-annealing algorithm for phase retrieval,” J. Opt. Soc. Am. A 5, 30–38 (1988). [CrossRef]
  41. R. W. Gerchberg and O. Saxton, “A practical algorithm for the determination of the phase from image and diffraction plane pictures,” Optik 35, 237–246 (1972).
  42. Z. Zalevsky, D. Mendlovic, and R. G. Dorsch, “Gerchberg–Saxton algorithm applied in the fractional Fourier or the Fresnel domain,” Opt. Lett. 21, 842–844 (1996). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 
Fig. 4.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited