OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 53, Iss. 8 — Mar. 10, 2014
  • pp: 1697–1708

Numerically focused full-field swept-source optical coherence microscopy with low spatial coherence illumination

Anton Grebenyuk, Antoine Federici, Vladimir Ryabukho, and Arnaud Dubois  »View Author Affiliations


Applied Optics, Vol. 53, Issue 8, pp. 1697-1708 (2014)
http://dx.doi.org/10.1364/AO.53.001697


View Full Text Article

Enhanced HTML    Acrobat PDF (977 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We propose a 3D imaging technique based on the combination of full-field swept-source optical coherence microscopy (FF-SSOCM) with low spatial coherence illumination and a special numerical processing that allows for numerically focused coherent-noise-free imaging without mechanical scanning in longitudinal or transversal directions. We show, both theoretically and experimentally, that the blurring effects arising in FF-SSOCM due to defocus can be corrected by appropriate numerical processing even when low spatial coherence illumination is used. A FF-SSOCM system was built for testing the performance of this technique. Coherent-noise-free imaging of a sample with longitudinal extent exceeding the optical depth of field is demonstrated without displacement of the sample or any optical element.

© 2014 Optical Society of America

OCIS Codes
(100.3010) Image processing : Image reconstruction techniques
(110.4500) Imaging systems : Optical coherence tomography
(110.6880) Imaging systems : Three-dimensional image acquisition
(180.3170) Microscopy : Interference microscopy
(090.1995) Holography : Digital holography
(070.7345) Fourier optics and signal processing : Wave propagation

ToC Category:
Imaging Systems

History
Original Manuscript: May 28, 2013
Revised Manuscript: December 9, 2013
Manuscript Accepted: January 14, 2014
Published: March 10, 2014

Virtual Issues
Vol. 9, Iss. 5 Virtual Journal for Biomedical Optics

Citation
Anton Grebenyuk, Antoine Federici, Vladimir Ryabukho, and Arnaud Dubois, "Numerically focused full-field swept-source optical coherence microscopy with low spatial coherence illumination," Appl. Opt. 53, 1697-1708 (2014)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-53-8-1697


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991). [CrossRef]
  2. W. Drexler and J. G. Fujimoto, eds. Optical Coherence Tomography (Springer, 2008).
  3. F. Lexer, C. K. Hitzenberger, W. Drexler, S. Molebny, H. Sattmann, M. Sticker, and A. F. Fercher, “Dynamic coherent focus OCT with depth-independent transversal resolution,” J. Mod. Opt. 46, 541–553 (1999). [CrossRef]
  4. Y. Wang, Y. Zhao, J. S. Nelson, Z. Chen, and R. S. Windeler, “Ultrahigh-resolution optical coherence tomography by broadband continuum generation from a photonic crystal fiber,” Opt. Lett. 28, 182–184 (2003). [CrossRef]
  5. J. P. Rolland, P. Meemon, S. Murali, K. P. Thompson, and K. S. Lee, “Gabor-based fusion technique for optical coherence microscopy,” Opt. Express 18, 3632–3642 (2010). [CrossRef]
  6. Z. Ding, H. Ren, Y. Zhao, J. S. Nelson, and Z. Chen, “High-resolution optical coherence tomography over a large depth range with an axicon lens,” Opt. Lett. 27, 243–245 (2002). [CrossRef]
  7. R. A. Leitgeb, M. Villiger, A. H. Bachmann, L. Steinmann, and T. Lasser, “Extended focus depth for Fourier domain optical coherence microscopy,” Opt. Lett. 31, 2450–2452 (2006). [CrossRef]
  8. T. S. Ralston, D. L. Marks, P. S. Carney, and S. A. Boppart, “Interferometric synthetic aperture microscopy,” Nat. Phys. 3, 129–134 (2007). [CrossRef]
  9. D. K. Hamilton and C. J. R. Sheppard, “A confocal interference microscope,” Optica Acta 29, 1573–1577 (1982). [CrossRef]
  10. J. A. Izatt, M. R. Hee, G. M. Owen, E. A. Swanson, and J. G. Fujimoto, “Optical coherence microscopy in scattering media,” Opt. Lett. 19, 590–592 (1994). [CrossRef]
  11. L. F. Yu and M. K. Kim, “Wavelength-scanning digital interference holography for tomographic three-dimensional imaging by use of the angular spectrum method,” Opt. Lett. 30, 2092–2094 (2005). [CrossRef]
  12. F. Montfort, T. Colomb, F. Charriere, J. Kuhn, P. Marquet, E. Cuche, S. Herminjard, and C. Depeursinge, “Submicrometer optical tomography by multiple-wavelength digital holographic microscopy,” Appl. Opt. 45, 8209–8217 (2006). [CrossRef]
  13. D. Hillmann, C. Luhrs, T. Bonin, P. Koch, and G. Huttmann, “Holoscopy-holographic optical coherence tomography,” Opt. Lett. 36, 2390–2392 (2011). [CrossRef]
  14. E. Beaurepaire, A. C. Boccara, M. Lebec, L. Blanchot, and H. Saint-Jalmes, “Full-field optical coherence microscopy,” Opt. Lett. 23, 244–246 (1998). [CrossRef]
  15. A. Dubois, L. Vabre, A. C. Boccara, and E. Beaurepaire, “High-resolution full-field optical coherence tomography with a Linnik microscope,” Appl. Opt. 41, 805–812 (2002). [CrossRef]
  16. L. Vabre, A. Dubois, and A. C. Boccara, “Thermal-light full-field optical coherence tomography,” Opt. Lett. 27, 530–532 (2002). [CrossRef]
  17. B. Laude, A. De Martino, B. Drévillon, L. Benattar, and L. Schwartz, “Full-field optical coherence tomography with thermal light,” Appl. Opt. 41, 6637–6645 (2002). [CrossRef]
  18. D. L. Marks, T. S. Ralston, S. A. Boppart, and P. S. Carney, “Inverse scattering for frequency-scanned full-field optical coherence tomography,” J. Opt. Soc. Am. A 24, 1034–1041 (2007). [CrossRef]
  19. A. A. Grebenyuk and V. P. Ryabukho, “Numerical correction of coherence gate in full-field swept-source interference microscopy,” Opt. Lett. 37, 2529–2531 (2012). [CrossRef]
  20. B. Karamata, M. Leutenegger, M. Laubscher, S. Bourquin, T. Lasser, and P. Lambelet, “Multiple scattering in optical coherence tomography. II. Experimental and theoretical investigation of cross talk in wide-field optical coherence tomography,” J. Opt. Soc. Am. A 22, 1380–1388 (2005). [CrossRef]
  21. D. Sacchet, M. Brzezinski, J. Moreau, P. Georges, and A. Dubois, “Motion artifact suppression in full-field optical coherence tomography,” Appl. Opt. 49, 1480–1488 (2010). [CrossRef]
  22. B. Povazay, A. Unterhuber, B. Hermann, H. Sattmann, H. Arthaber, and W. Drexler, “Full-field time-encoded frequency-domain optical coherence tomography,” Opt. Express 14, 7661–7669 (2006). [CrossRef]
  23. A. A. Grebenyuk and V. P. Ryabukho, “Theoretical model of volumetric objects imaging in a microscope,” Proc. SPIE 8430, 84301B (2012). [CrossRef]
  24. A. A. Grebenyuk and V. P. Ryabukho, “Coherence effects of thick objects imaging in interference microscopy,” Proc. SPIE 8427, 84271M (2012). [CrossRef]
  25. L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge University, 1995), Section 2.4.
  26. P. de Groot and X. C. de Lega, “Signal modeling for low-coherence height-scanning interference microscopy,” Appl. Opt. 43, 4821–4830 (2004). [CrossRef]
  27. V. Ryabukho, D. Lyakin, and M. Lobachev, “Longitudinal pure spatial coherence of a light field with wide frequency and angular spectra,” Opt. Lett. 30, 224–226 (2005). [CrossRef]
  28. A. Dubois, G. Moneron, and C. Boccara, “Thermal-light full-field optical coherence tomography in the 1.2  μm wavelength region,” Opt. Commun. 266, 738–743 (2006). [CrossRef]
  29. A. Safrani and I. Abdulhalim, “Spatial coherence effect on layer thickness determination in narrowband full-field optical coherence tomography,” Appl. Opt. 50, 3021–3027 (2011). [CrossRef]
  30. T. S. Ralston, D. L. Marks, P. S. Carney, and S. A. Boppart, “Inverse scattering for optical coherence tomography,” J. Opt. Soc. Am. A 23, 1027–1037 (2006). [CrossRef]
  31. A. A. Grebenyuk and V. P. Ryabukho, “Numerical reconstruction of volumetric image in swept-source interference microscopy,” AIP Conf. Proc. 1537, 147–154 (2013). [CrossRef]
  32. M. D. Modell, V. Ryabukho, D. Lyakin, V. Lychagov, E. Vitkin, I. Itzkan, and L. T. Perelman, “Autocorrelation low coherence interferometry,” Opt. Commun. 281, 1991–1996 (2008). [CrossRef]
  33. J. Rosen and A. Yariv, “Longitudinal partial coherence of optical radiation,” Opt. Commun. 117, 8–12 (1995). [CrossRef]
  34. V. Ryabukho, D. Lyakin, and M. Lobachev, “Influence of longitudinal spatial coherence on the signal of a scanning interferometer,” Opt. Lett. 29, 667–669 (2004). [CrossRef]
  35. A. A. Grebenyuk and V. P. Ryabukho, “Numerical reconstruction of 3D image in Fourier domain confocal optical coherence microscopy,” in Proceedings of the International Conference on Advanced Laser Technologies (ALT) (Bern Open, 2013), pp. 1–5.
  36. I. Zeylikovich, “Short coherence length produced by a spatial incoherent source applied for the Linnik-type interferometer,” Appl. Opt. 47, 2171–2177 (2008). [CrossRef]
  37. I. Abdulhalim, “Competence between spatial and temporal coherence in full field optical coherence tomography and interference microscopy,” J. Opt. A 8, 952–958 (2006). [CrossRef]
  38. V. P. Ryabukho, D. V. Lyakin, A. A. Grebenyuk, and S. S. Klykov, “Wiener–Khintchin theorem for spatial coherence of optical wave field,” J. Opt. 15, 025405 (2013). [CrossRef]
  39. A. D. Aguirre and J. G. Fujimoto, “Optical coherence microscopy,” in Optical Coherence Tomography, W. Drexler and J. G. Fujimoto, eds. (Springer, 2008), pp. 505–542.
  40. M. D. Bayleyegn, H. Makhlouf, C. Crotti, K. Plamann, and A. Dubois, “Ultrahigh resolution spectral-domain optical coherence tomography at 1.3  μm using a broadband superluminescent diode light source,” Opt. Commun. 285, 5564–5569 (2012). [CrossRef]
  41. M. A. Choma, M. V. Sarunic, C. H. Yang, and J. A. Izatt, “Sensitivity advantage of swept source and Fourier domain optical coherence tomography,” Opt. Express 11, 2183–2189 (2003). [CrossRef]
  42. D. Sacchet, J. Moreau, P. Georges, and A. Dubois, “Simultaneous dual-band ultra-high resolution full-field optical coherence tomography,” Opt. Express 16, 19434–19446 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited