OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 53, Iss. 9 — Mar. 20, 2014
  • pp: 1889–1893

Electromagnetically induced self-imaging in four-level atomic system

Feng Wang, Chunfang Wang, Jing Cheng, and Dawei Zhang  »View Author Affiliations


Applied Optics, Vol. 53, Issue 9, pp. 1889-1893 (2014)
http://dx.doi.org/10.1364/AO.53.001889


View Full Text Article

Enhanced HTML    Acrobat PDF (432 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In this paper, a special gradient-index electromagnetically induced transparency medium is induced with a Gaussian control field, which can be realized in a four-level Rb87 cold atomic cloud. Special directional self-imaging and imaging transforming properties are studied in this work. Simulated results show that a complex object can be imaged in the cold atoms, as the control field substituted with the elliptical Gaussian beam, then the self-imaging is directional, which has potental application in encryption.

© 2014 Optical Society of America

OCIS Codes
(000.4430) General : Numerical approximation and analysis
(030.1670) Coherence and statistical optics : Coherent optical effects
(110.0110) Imaging systems : Imaging systems

ToC Category:
Imaging Systems

History
Original Manuscript: December 26, 2013
Manuscript Accepted: January 22, 2014
Published: March 19, 2014

Citation
Feng Wang, Chunfang Wang, Jing Cheng, and Dawei Zhang, "Electromagnetically induced self-imaging in four-level atomic system," Appl. Opt. 53, 1889-1893 (2014)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-53-9-1889


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. K. Patorski, “The self imaging phenomenon and its applications,” Prog. Opt. 27, 16–20 (1989), and references therein. [CrossRef]
  2. C. Gomez-Reino and E. Larrea, “Paraxial imaging and transforming in a medium with gradient-index: transmittance function,” Appl. Opt. 21, 4271–4275 (1982). [CrossRef]
  3. C. Gomez-Reino, M. V. Perez, and C. Bao, GRIN Optics: Fundamentals and Applications (Springer-Verlag, 2002).
  4. C. F. Wang, J. Cheng, and S. S. Han, “Slow light deflection in the Gaussian pumped atomic medium,” Chin. Opt. Lett. 8, 115–118 (2010). [CrossRef]
  5. C. F. Wang, J. Cheng, and S. S. Han, “Manipulating the focal shift in a medium with electromagnetically induced transparency,” J. Mod. Opt. 55, 985–992 (2008). [CrossRef]
  6. J. Cheng and S. S. Han, “Electromagnetically induced self-imaging,” Opt. Lett. 32, 1162–1164 (2007). [CrossRef]
  7. S. E. Harris, “Electromagnetically induced transparency,” Phys. Today 50(7), 36–42 (1997). [CrossRef]
  8. M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: optics in coherent media,” Rev. Mod. Phys. 77, 633–673 (2005). [CrossRef]
  9. V. G. Arkhipkin and S. A. Myslivets, “All-optical switching in a photonic crystal with a defect containing an N -type four-level atomic system,” Phys. Rev. A 86, 063816 (2012). [CrossRef]
  10. J. Stanojevic, V. Parigi, E. Bimbard, A. Ourjoumtsev, and P. Grangier, “Dispersive optical nonlinearities in a Rydberg electromagnetically-induced-transparency medium,” Phys. Rev. A 88, 053845 (2013). [CrossRef]
  11. G. Heinze, N. Rentzsch, and T. Halfmann, “Multiplexed image storage by electromagnetically induced transparency in a solid,” Phys. Rev. A 86, 053837 (2012). [CrossRef]
  12. S. C. Zhang, S. Y. Zhou, M. M. T. Loy, G. K. L. Wong, and S. W. Du, “Optical storage with electromagnetically induced transparency in a dense cold atomic ensemble,” Opt. Lett. 36, 4530–4532 (2011). [CrossRef]
  13. R. R. Moseley, S. Shepherd, D. J. Fulton, B. D. Sinclair, and M. H. Dunn, “Electromagnetically-induced focusing,” Phys. Rev. A 53, 408–415 (1996). [CrossRef]
  14. H. Y. Ling, Y. Q. Li, and M. Xiao, “Electromagnetically induced grating: homogeneously broadened medium,” Phys. Rev. A 57, 1338–1344 (1998). [CrossRef]
  15. F. X. Zhou, Y. H. Qi, H. Sun, D. J. Chen, J. Yang, Y. P. Niu, and S. Q. Gong, “Electromagnetically induced grating in asymmetric quantum wells via Fano interference,” Opt. Express 21, 12249–12259 (2013). [CrossRef]
  16. H. Shpaisman, A. D. Wilson-Gordon, and H. Friedmann, “Electromagnetically induced waveguiding in double systems,” Phys. Rev. A 71, 043812 (2005). [CrossRef]
  17. A. Andre, M. Bajcsy, A. S. Zibrov, and M. D. Lukin, “Nonlinear optics with stationary pulses of light,” Phys. Rev. Lett. 94, 063902 (2005). [CrossRef]
  18. J. Cheng, S. S. Han, and Y. J. Yan, “Transverse localization and slow propagation of light,” Phys. Rev. A 72, 021801(R) (2005). [CrossRef]
  19. J. Cheng and S. S. Han, “Manipulating spectral anomalies of focused pulses in a medium with electromagnetically induced transparency,” Phys. Rev. A 73, 063803 (2006). [CrossRef]
  20. S. E. Harris and Y. Yamamoto, “Photon switching by quantum interference,” Phys. Rev. Lett. 81, 3611–3614 (1998). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited