OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 53, Iss. 9 — Mar. 20, 2014
  • pp: 1909–1917

Dispersion-free continuum two-dimensional electronic spectrometer

Haibin Zheng, Justin R. Caram, Peter D. Dahlberg, Brian S. Rolczynski, Subha Viswanathan, Dmitriy S. Dolzhnikov, Amir Khadivi, Dmitri V. Talapin, and Gregory S. Engel  »View Author Affiliations


Applied Optics, Vol. 53, Issue 9, pp. 1909-1917 (2014)
http://dx.doi.org/10.1364/AO.53.001909


View Full Text Article

Enhanced HTML    Acrobat PDF (1277 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Electronic dynamics span broad energy scales with ultrafast time constants in the condensed phase. Two-dimensional (2D) electronic spectroscopy permits the study of these dynamics with simultaneous resolution in both frequency and time. In practice, this technique is sensitive to changes in nonlinear dispersion in the laser pulses as time delays are varied during the experiment. We have developed a 2D spectrometer that uses broadband continuum generated in argon as the light source. Using this visible light in phase-sensitive optical experiments presents new challenges in implementation. We demonstrate all-reflective interferometric delays using angled stages. Upon selecting an 180nm window of the available bandwidth at 10fs compression, we probe the nonlinear response of broadly absorbing CdSe quantum dots and electronic transitions of Chlorophyll a.

© 2014 Optical Society of America

OCIS Codes
(300.2570) Spectroscopy : Four-wave mixing
(300.6550) Spectroscopy : Spectroscopy, visible
(320.7150) Ultrafast optics : Ultrafast spectroscopy

ToC Category:
Spectroscopy

History
Original Manuscript: November 7, 2013
Revised Manuscript: February 3, 2014
Manuscript Accepted: February 6, 2014
Published: March 19, 2014

Citation
Haibin Zheng, Justin R. Caram, Peter D. Dahlberg, Brian S. Rolczynski, Subha Viswanathan, Dmitriy S. Dolzhnikov, Amir Khadivi, Dmitri V. Talapin, and Gregory S. Engel, "Dispersion-free continuum two-dimensional electronic spectrometer," Appl. Opt. 53, 1909-1917 (2014)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-53-9-1909


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. D. Hybl, A. A. Ferro, and D. M. Jonas, “Two-dimensional Fourier transform electronic spectroscopy,” J. Chem. Phys. 115, 6606–6622 (2001). [CrossRef]
  2. D. M. Jonas, “Two-dimensional femtosecond spectroscopy,” Annu. Rev. Phys. Chem. 54, 425–463 (2003). [CrossRef]
  3. M. L. Cowan, J. P. Ogilvie, and R. J. D. Miller, “Two-dimensional spectroscopy using diffractive optics based phased-locked photon echoes,” Chem. Phys. Lett. 386, 184–189 (2004). [CrossRef]
  4. T. Brixner, T. Mancal, I. Stiopkin, and G. Fleming, “Phase-stabilized two-dimensional electronic spectroscopy,” J. Chem. Phys. 121, 4221–4236 (2004). [CrossRef]
  5. K. Wells, Z. Zhang, J. Rouxel, and H. Tan, “Measuring the spectral diffusion of chlorophyll a using two-dimensional electronic spectroscopy,” J. Phys. Chem. B 117, 2294–2299 (2013). [CrossRef]
  6. J. D. Hybl, A. Yu, D. A. Farrow, and D. M. Jonas, “Polar solvation dynamics in the femtosecond evolution of two-dimensional Fourier transform spectra,” J. Phys. Chem. A 106, 7651–7654 (2002). [CrossRef]
  7. T. Brixner, J. Stenger, H. M. Vaswani, M. Cho, R. E. Blankenship, and G. R. Fleming, “Two-dimensional spectroscopy of electronic couplings in photosynthesis,” Nature 434, 625–628 (2005). [CrossRef]
  8. E. L. Read, G. S. Engel, T. R. Calhoun, T. Mancal, T. K. Ahn, R. E. Blankenship, and G. R. Fleming, “Cross-peak-specific two-dimensional electronic spectroscopy,” Proc. Natl. Acad. Sci. USA 104, 14203–14208 (2007). [CrossRef]
  9. E. Read, G. Engel, T. Calhoun, T. Mancal, T. Ahn, R. Blankenship, and G. Fleming, “Cross-peak-specific two-dimensional electronic spectroscopy,” Proc. Natl. Acad. Sci. USA 104, 14203–14208 (2007). [CrossRef]
  10. E. Collini, C. Y. Wong, K. E. Wilk, P. M. G. Curmi, P. Brumer, and G. D. Scholes, “Coherently wired light-harvesting in photosynthetic marine algae at ambient temperature,” Nature 463, 644–647 (2010). [CrossRef]
  11. G. Schlau-Cohen, A. Ishizaki, and G. Fleming, “Two-dimensional electronic spectroscopy and photosynthesis: fundamentals and applications to photosynthetic light-harvesting,” Chem. Phys. 386, 1–22 (2011). [CrossRef]
  12. N. Ginsberg, J. Davis, M. Ballottari, Y. Cheng, R. Bassi, and G. Fleming, “Solving structure in the CP29 light harvesting complex with polarization-phased 2D electronic spectroscopy,” Proc. Natl. Acad. Sci. USA 108, 3848–3853 (2011). [CrossRef]
  13. E. Harel and G. S. Engel, “Quantum coherence spectroscopy reveals complex dynamics in bacterial light-harvesting complex 2 (LH2),” Proc. Natl. Acad. Sci. USA 109, 706–711(2012).
  14. E. E. Ostroumov, R. M. Mulvaney, R. J. Cogdell, and G. D. Scholes, “Broadband 2D electronic spectroscopy reveals a carotenoid dark state in purple bacteria,” Science 340, 52–56 (2013). [CrossRef]
  15. G. Moody, R. Singh, H. Li, I. A. Akimov, M. Bayer, D. Reuter, A. D. Wieck, A. S. Bracker, D. Gammon, and S. T. Cundiff, “Influence of confinement on biexciton binding in semiconductor quantum dot ensembles measured with two-dimensional spectroscopy,” Phys. Rev. B 87, 041304 (2013). [CrossRef]
  16. C. Wong and G. Scholes, “Biexcitonic fine structure of CdSe nanocrystals probed by polarization-dependent two-dimensional photon echo spectroscopy,” J. Phys. Chem. A 115, 3797–3806 (2011). [CrossRef]
  17. D. Turner, Y. Hassan, and G. Scholes, “Exciton superposition states in CdSe nanocrystals measured using broadband two-dimensional electronic spectroscopy,” Nano Lett. 12, 880–886 (2012). [CrossRef]
  18. G. Griffin, S. Ithurria, D. Dolzhnikov, A. Linkin, D. Talapin, and G. Engel, “Two-dimensional electronic spectroscopy of CdSe nanoparticles at very low pulse power,” J. Chem. Phys. 138, 014705 (2013). [CrossRef]
  19. P. Tian, D. Keusters, Y. Suzaki, and W. S. Warren, “Femtosecond phase-coherent two-dimensional spectroscopy,” Science 300, 1553–1555 (2003). [CrossRef]
  20. X. Dai, A. Bristow, D. Karaiskaj, and S. Cundiff, “Two-dimensional Fourier-transform spectroscopy of potassium vapor,” Phys. Rev. A 82, 052503 (2010). [CrossRef]
  21. P. F. Tekavec, G. A. Lott, and A. H. Marcus, “Fluorescence-detected two-dimensional electronic coherence spectroscopy by acousto-optic phase modulation,” J. Chem. Phys. 127, 214307 (2007). [CrossRef]
  22. H. Li, A. D. Bristow, M. E. Siemens, G. Moody, and S. T. Cundiff, “Unraveling quantum pathways using optical 3d Fourier-transform spectroscopy,” Nat. Commun. 4, 1390 (2013). [CrossRef]
  23. M. Cho, “Coherent two-dimensional optical spectroscopy,” Chem. Rev. 108, 1331–1418 (2008). [CrossRef]
  24. J. Hybl, A. Albrecht, S. Faeder, and D. Jonas, “Two-dimensional electronic spectroscopy,” Chem. Phys. Lett. 297, 307–313 (1998). [CrossRef]
  25. M. Cho, Two-dimensional Optical Spectroscopy (CRC Press, 2009).
  26. R. N. Augulis and D. Zigmantas, “Detector and dispersive delay calibration issues in broadband 2D electronic spectroscopy,” J. Opt. Soc. Am. B 30, 1770–1774 (2013). [CrossRef]
  27. J. A. Davis, T. R. Calhoun, K. A. Nugent, and H. M. Quiney, “Ultrafast optical multidimensional spectroscopy without interferometry,” J. Chem. Phys. 134, 024504 (2011). [CrossRef]
  28. Y. Zhang, K. Meyer, C. Ott, and T. Pfeifer, “Passively phase-stable, monolithic, all-reflective two-dimensional electronic spectroscopy based on a four-quadrant mirror,” Opt. Lett. 38, 356–358 (2013). [CrossRef]
  29. U. Selig, C. F. Schleussner, M. Foerster, F. Langhojer, P. Nuernberger, and T. Brixner, “Coherent two-dimensional ultraviolet spectroscopy in fully noncollinear geometry,” Opt. Lett. 35, 4178–4180 (2010). [CrossRef]
  30. U. Selig, F. Langhojer, F. Dimler, T. Lohrig, C. Schwarz, B. Gieseking, and T. Brixner, “Inherently phase-stable coherent two-dimensional spectroscopy using only conventional optics,” Opt. Lett. 33, 2851–2853 (2008). [CrossRef]
  31. T. Zhang, C. Borca, X. Li, and S. Cundiff, “Optical two-dimensional Fourier transform spectroscopy with active interferometric stabilization,” Opt. Express 13, 7432–7441 (2005). [CrossRef]
  32. E. Harel, A. Fidler, and G. Engel, “Real-time mapping of electronic structure with single-shot two-dimensional electronic spectroscopy,” Proc. Natl. Acad. Sci. USA 107, 16444–16447 (2010). [CrossRef]
  33. E. Harel, A. Fidler, and G. Engel, “Single-shot gradient-assisted photon echo electronic spectroscopy,” J. Phys. Chem. A 115, 3787–3796 (2011). [CrossRef]
  34. D. B. Turner, K. W. Stone, K. Gundogdu, and K. A. Nelson, “Invited article: the coherent optical laser beam recombination technique (colbert) spectrometer: coherent multidimensional spectroscopy made easier,” Rev. Sci. Instrum. 82, 081301 (2011). [CrossRef]
  35. S. Yin, O. Leonov, F. Yu, V. Molotok, and V. Kludzin, “Design and fabrication of a 24-channel acousto-optic spatial light modulator,” Appl. Opt. 37, 7482–7489 (1998). [CrossRef]
  36. S.-H. Shim, D. B. Strasfeld, Y. L. Ling, and M. T. Zanni, “Automated 2D IR spectroscopy using a mid-IR pulse shaper and application of this technology to the human islet amyloid polypeptide,” Proc. Natl. Acad. Sci. USA 104, 14197–14202 (2007). [CrossRef]
  37. J. Myers, K. Lewis, P. Tekavec, and J. Ogilvie, “Two-color two-dimensional Fourier transform electronic spectroscopy with a pulse-shaper,” Opt. Express 16, 17420–17428 (2008). [CrossRef]
  38. P. Tyagi, J. I. Saari, B. Walsh, A. Kabir, V. Crozatier, N. Forget, and P. Kambhampati, “Two-color two-dimensional electronic spectroscopy using dual acousto-optic pulse shapers for complete amplitude, phase, and polarization control of femtosecond laser pulses,” J. Phys. Chem. A 117, 6264–6269 (2013). [CrossRef]
  39. K. Iizuka, Elements of Photonics (Wiley-Interscience, 2002).
  40. B. A. West, B. P. Molesky, P. G. Giokas, and A. M. Moran, “Uncovering molecular relaxation processes with nonlinear spectroscopies in the deep UV,” Chem. Phys. 423, 92–104 (2013). [CrossRef]
  41. E. Harel, P. D. Long, and G. S. Engel, “Single-shot ultrabroadband two-dimensional electronic spectroscopy of the light-harvesting complex LH2,” Opt. Lett. 36, 1665–1667 (2011). [CrossRef]
  42. D. E. Wilcox, F. D. Fuller, and J. P. Ogilvie, “Fast second-harmonic generation frequency-resolved optical gating using only a pulse shaper,” Opt. Lett. 38, 2980–2983 (2013). [CrossRef]
  43. D. Kartashov, S. Aliauskas, A. Puglys, A. Voronin, A. Zheltikov, M. Petrarca, P. Béjot, J. Kasparian, J.-P. Wolf, and A. Baltuka, “White light generation over three octaves by femtosecond filament at 3.9 μm in argon,” Opt. Lett. 37, 3456–3458 (2012). [CrossRef]
  44. M. Nisoli, S. DeSilvestri, and O. Svelto, “Generation of high energy 10  fs pulses by a new pulse compression technique,” Appl. Phys. Lett. 68, 2793–2795 (1996). [CrossRef]
  45. M. Nisoli, G. Sansone, S. Stagira, C. Vozzi, S. De Silvestri, and O. Svelto, “Ultra-broadband continuum generation by hollow-fiber cascading,” Appl. Phys. B 75, 601–604 (2002). [CrossRef]
  46. G. Steinmeyer and G. Stibenz, “Generation of sub-4-fs pulses via compression of a white-light continuum using only chirped mirrors,” Appl. Phys. B 82, 175–181 (2006). [CrossRef]
  47. H. Wang, Y. Wu, C. Li, H. Mashiko, S. Gilbertson, and Z. Chang, “Generation of 0.5  mJ, few-cycle laser pulses by an adaptive phase modulator,” Opt. Express 16, 14448–14455 (2008). [CrossRef]
  48. K. Yamane, Z. Zhang, K. Oka, R. Morita, M. Yamashita, and A. Suguro, “Optical pulse compression to 3.4 fs in the monocycle region by feedback phase compensation,” Opt. Lett. 28, 2258–2260 (2003). [CrossRef]
  49. B. Xu, Y. Coello, V. Lozovoy, D. Harris, and M. Dantus, “Pulse shaping of octave spanning femtosecond laser pulses,” Opt. Express 14, 10939–10944 (2006). [CrossRef]
  50. B. Xu, J. Gunn, J. Dela Cruz, V. Lozovoy, and M. Dantus, “Quantitative investigation of the multiphoton intrapulse interference phase scan method for simultaneous phase measurement and compensation of femtosecond laser pulses,” J. Opt. Soc. Am. B 23, 750–759 (2006). [CrossRef]
  51. R. Trebino, K. DeLong, D. Fittinghoff, J. Sweetser, M. Krumbugel, B. Richman, and D. Kane, “Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating,” Rev. Sci. Instrum. 68, 3277–3295 (1997). [CrossRef]
  52. R. Trebino, Frequency-Resolved Optical Gating: The Measurement of Ultrashort Laser Pulses (Springer, 2002).
  53. J. Sweetser, D. Fittinghoff, and R. Trebino, “Transient-grating frequency-resolved optical gating,” Opt. Lett. 22, 519–521 (1997). [CrossRef]
  54. N. Christensson, F. Milota, J. Hauer, J. Sperling, O. Bixner, A. Nemeth, and H. F. Kauffmann, “High frequency vibrational modulations in two-dimensional electronic spectra and their resemblance to electronic coherence signatures,” J. Phys. Chem. B 115, 5383–5391 (2011). [CrossRef]
  55. D. B. Turner, K. E. Wilk, P. M. G. Curmi, and G. D. Scholes, “Comparison of electronic and vibrational coherence measured by two-dimensional electronic spectroscopy,” J. Phys. Chem. Lett. 2, 1904–1911 (2011). [CrossRef]
  56. M. K. Yetzbacher, N. Belabas, K. A. Kitney, and D. M. Jonas, “Propagation, beam geometry, and detection distortions of peak shapes in two-dimensional Fourier transform spectra,” J. Chem. Phys. 126, 044511 (2007). [CrossRef]
  57. C. Dorrer, N. Belabas, J. P. Likforman, and M. Joffre, “Spectral resolution and sampling issues in Fourier-transform spectral interferometry,” J. Opt. Soc. Am. B 17, 1795–1802 (2000). [CrossRef]
  58. S. Mukamel, Principles of Nonlinear Optical Spectroscopy (Oxford, 1995).
  59. A. Zewail, “Femtochemistry: atomic-scale dynamics of the chemical bond,” J. Phys. Chem. A 104, 5660–5694 (2000). [CrossRef]
  60. M. Drescher, M. Hentschel, R. Kienberger, M. Uiberacker, V. Yakovlev, A. Scrinzi, T. Westerwalbesloh, U. Kleineberg, U. Heinzmann, and F. Krausz, “Time-resolved atomic inner-shell spectroscopy,” Nature 419, 803–807 (2002). [CrossRef]
  61. P. Kambhampati, “Hot exciton relaxation dynamics in semiconductor quantum dots: radiationless transitions on the nanoscale,” J. Phys. Chem. C 115, 22089–22109 (2011). [CrossRef]
  62. J. Anna, E. Ostroumov, K. Maghlaoui, J. Barber, and G. Scholes, “Two-dimensional electronic spectroscopy reveals ultrafast downhill energy transfer in photosystem I trimers of the Cyanobacterium Thermosynechococcus elongatus,” J. Phys. Chem. Lett. 3, 3677–3684 (2012). [CrossRef]
  63. J. Du, K. Nakata, Y. Jiang, E. Tokunaga, and T. Kobayashi, “Spectral modulation observed in Chl-a by ultrafast laser spectroscopy,” Opt. Express 19, 22480–22485 (2011). [CrossRef]
  64. V. I. Prokhorenko, A. Halpin, and R. J. D. Miller, “Coherently-controlled two-dimensional photon echo electronic spectroscopy,” Opt. Express 17, 9764–9779 (2009). [CrossRef]
  65. G. Panitchayangkoon, D. Hayes, K. Fransted, J. Caram, E. Harel, J. Wen, R. Blankenship, and G. Engel, “Long-lived quantum coherence in photosynthetic complexes at physiological temperature,” Proc. Natl. Acad. Sci. USA 107, 12766–12770 (2010). [CrossRef]
  66. P. F. Tekavec, J. A. Myers, K. L. M. Lewis, F. D. Fuller, and J. P. Ogilvie, “Effects of chirp on two-dimensional Fourier transform electronic spectra,” Opt. Express 18, 11015–11024 (2010). [CrossRef]
  67. M. Li, J. P. Nibarger, C. Guo, and G. N. Gibson, “Dispersion-free transient-grating frequency-resolved optical gating,” Appl. Opt. 38, 5250–5253 (1999). [CrossRef]
  68. A. L. Efros and M. Rosen, “The electronic structure of semiconductor nanocrystals,” Annu. Rev. Mater. Sci. 30, 475–521 (2000). [CrossRef]
  69. D. Norris and M. Bawendi, “Measurement and assignment of the size-dependent optical spectrum in CdSe quantum dots,” Phys. Rev. B 53, 16338–16346 (1996). [CrossRef]
  70. V. I. Klimov, D. W. McBranch, C. A. Leatherdale, and M. G. Bawendi, “Electron and hole relaxation pathways in semiconductor quantum dots,” Phys. Rev. B 60, 13740–13749 (1999). [CrossRef]
  71. V. I. Klimov, “Optical nonlinearities and ultrafast carrier dynamics in semiconductor nanocrystals,” J. Phys. Chem. B 104, 6112–6123 (2000). [CrossRef]
  72. V. I. Klimov, “Spectral and dynamical properties of multiexcitons in semiconductor nanocrystals,” Annu. Rev. Phys. Chem. 58, 635–673 (2007). [CrossRef]
  73. S. L. Sewall, A. Franceschetti, R. R. Cooney, A. Zunger, and P. Kambhampati, “Direct observation of the structure of band-edge biexcitons in colloidal semiconductor CdSe quantum dots,” Phys. Rev. B 80, 081310 (2009). [CrossRef]
  74. G. D. Scholes, “Selection rules for probing biexcitons and electron spin transitions in isotropic quantum dot ensembles,” J. Chem. Phys. 121, 10104 (2004). [CrossRef]
  75. S. L. Sewall, R. R. Cooney, K. E. H. Anderson, E. A. Dias, D. M. Sagar, and P. Kambhampati, “State-resolved studies of biexcitons and surface trapping dynamics in semiconductor quantum dots,” J. Chem. Phys. 129, 084701 (2008). [CrossRef]
  76. K. W. Stone, K. Gundogdu, D. B. Turner, X. Li, S. T. Cundiff, and K. A. Nelson, “Two-quantum 2D FT electronic spectroscopy of biexcitons in GaAs quantum wells,” Science 324, 1169–1173 (2009). [CrossRef]
  77. P. Kambhampati, “Unraveling the structure and dynamics of excitons in semiconductor quantum dots,” Acc. Chem. Res. 44, 1–13 (2011). [CrossRef]
  78. D. B. Turner, Y. Hassan, and G. D. Scholes, “Exciton superposition states in CdSe nanocrystals measured using broadband two-dimensional electronic spectroscopy,” Nano Lett. 12, 880–886 (2012). [CrossRef]
  79. C. Y. Wong and G. D. Scholes, “Using two-dimensional photon echo spectroscopy to probe the fine structure of the ground state biexciton of CdSe nanocrystals,” J. Lumin. 131, 366–374 (2011). [CrossRef]
  80. P. Kambhampati, “Multiexcitons in semiconductor nanocrystals: a platform for optoelectronics at high carrier concentration,” J. Phys. Chem. Lett. 3, 1182–1190 (2012). [CrossRef]
  81. M. Ratsep, J. Linnanto, and A. Freiberg, “Mirror symmetry and vibrational structure in optical spectra of Chlorophyll a,” J. Chem. Phys. 130, 194501 (2009). [CrossRef]
  82. R. E. Blankenship, Molecular Mechanisms of Photosynthesis (Blackwell Science, 2002).
  83. J. Du, T. Teramoto, K. Nakata, E. Tokunaga, and T. Kobayashi, “Real-time vibrational dynamics in Chlorophyll a studied with a few-cycle pulse laser,” Biophys. J. 101, 995–1003 (2011). [CrossRef]
  84. J. L. Hughes, B. Conlon, T. Wydrzynski, and E. Krausz, “The assignment of Qy(1,0) vibrational structure and Qx for Chlorophyll a,” Phys. Proc. 3, 9 (2010).
  85. I. Renge, K. Mauring, P. Sarv, and R. Avarmaa, “Vibrationally resolved optical-spectra of chlorophyll derivatives in different solid media,” J. Phys. Chem. 90, 6611–6616 (1986). [CrossRef]
  86. J. R. Reimers, Z. L. Cai, R. Kobayashi, M. Ratsep, A. Freiberg, and E. Krausz, “Assignment of the Q-bands of the chlorophylls: coherence loss via Qx—Qy mixing,” Sci. Rep. 3, 2761 (2013). [CrossRef]
  87. M. Umetsu, Z. Y. Wang, M. Kobayashi, and T. Nozawa, “Interaction of photosynthetic pigments with various organic solvents—magnetic circular dichroism approach and application to chlorosomes,” Biochim. Biophys. Acta 1410, 19–31 (1999). [CrossRef]
  88. L. De Boni, D. S. Correa, F. J. Pavinatto, D. S. dos Santos, and C. R. Mendonca, “Excited state absorption spectrum of chlorophyll a obtained with white-light continuum,” J. Chem. Phys. 126, 165102 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited