OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 53, Iss. 9 — Mar. 20, 2014
  • pp: 1929–1937

Measurement of higher order chromatic dispersion in a photonic bandgap fiber: comparative study of spectral interferometric methods

T. Grósz, A. P. Kovács, M. Kiss, and R. Szipőcs  »View Author Affiliations


Applied Optics, Vol. 53, Issue 9, pp. 1929-1937 (2014)
http://dx.doi.org/10.1364/AO.53.001929


View Full Text Article

Enhanced HTML    Acrobat PDF (941 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Chromatic dispersion of a 37 cm long, solid-core photonic bandgap (PBG) fiber was studied in the wavelength range of 740–840 nm with spectral interferometry employing a Mach–Zehnder interferometer and a high resolution spectrometer. The interferometer was illuminated by a Ti:sapphire laser providing 20 fs pulses. A comparative study has been carried out to find the most accurate spectral phase retrieval method that is suitable for measuring higher order chromatic dispersion. The stationary phase point, the minima–maxima, the cosine function fit, the Fourier transform, and the windowed Fourier transform methods were tested. It was shown that out of these five techniques, the Fourier-transform method provided the dispersion coefficients with the highest accuracy, and it could also detect rapid phase changes in the vicinity of leaking mode frequencies within the transmission band of the PBG fiber.

© 2014 Optical Society of America

OCIS Codes
(060.2300) Fiber optics and optical communications : Fiber measurements
(120.3180) Instrumentation, measurement, and metrology : Interferometry
(060.4005) Fiber optics and optical communications : Microstructured fibers

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: November 26, 2013
Revised Manuscript: February 7, 2014
Manuscript Accepted: February 13, 2014
Published: March 19, 2014

Citation
T. Grósz, A. P. Kovács, M. Kiss, and R. Szipőcs, "Measurement of higher order chromatic dispersion in a photonic bandgap fiber: comparative study of spectral interferometric methods," Appl. Opt. 53, 1929-1937 (2014)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-53-9-1929


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. P. Yeh, A. Yariv, and E. Marom, “Theory of Bragg fiber,” J. Opt. Soc. Am. 68, 1196–1201 (1978). [CrossRef]
  2. J. Fekete, Z. Várallyay, and R. Szipőcs, “Design of high-bandwidth one- and two dimensional photonic bandgap dielectric structures at grazing incidence of light,” Appl. Opt. 47, 5330–5336 (2008). [CrossRef]
  3. J. C. Knight, T. A. Birks, P. St. J. Russell, and D. M. Atkin, “All-silica single-mode optical fiber with photonic crystal cladding,” Opt. Lett. 21, 1547–1549 (1996). [CrossRef]
  4. J. Broeng, D. Mogilevstev, S. E. Barkou, and A. Bjarklev, “Photonic crystal fibers: a new class of optical waveguides,” Opt. Fiber Technol. 5, 305–330 (1999). [CrossRef]
  5. A. Ferrando, E. Silvestre, J. J. Miret, and P. Andrés, “Nearly zero ultraflattened dispersion in photonic crystal fibers,” Opt. Lett. 25, 790–792 (2000). [CrossRef]
  6. T. P. White, R. C. McPhedran, C. Martijin de Sterke, N. M. Litchinister, and B. J. Eggleton, “Resonance and scattering in microstructured fibers,” Opt. Lett. 27, 1977–1979 (2002). [CrossRef]
  7. P. St. J. Russell, “Photonic-crystal fibers,” J. Lightwave Technol. 24, 4729–4749 (2006). [CrossRef]
  8. Q. Fang, Z. Wang, L. Jin, J. Liu, Y. Yue, Y. Liu, G. Kai, S. Yuan, and X. Dong, “Dispersion design of all-solid photonic bandgap fiber,” J. Opt. Soc. Am. B 24, 2899–2905 (2007). [CrossRef]
  9. Z. Várallyay, K. Saitoh, J. Fekete, K. Kakihara, M. Koshiba, and R. Szipőcs, “Reversed dispersion slope photonic bandgap fibers for broadband dispersion control in femtosecond fiber lasers,” Opt. Express 16, 15603–15615 (2008). [CrossRef]
  10. Z. Várallyay, K. Saitoh, Á. Szabó, and R. Szipőcs, “Photonic bandgap fibers with resonant structures for tailoring the dispersion,” Opt. Express 17, 11869–11883 (2009). [CrossRef]
  11. L. G. Cohen, “Comparison of single-mode fiber dispersion measurement techniques,” J. Lightwave Technol. 3, 958–966 (1985). [CrossRef]
  12. M. A. Galle, W. Mohammed, L. Qian, and P. W. E. Smith, “Single-arm three-wave interferometer for measuring dispersion of short lengths of fiber,” Opt. Express 15, 16896–16908 (2007). [CrossRef]
  13. C. Sáinz, P. Jourdain, R. Escalona, and J. Calatroni, “Real-time interferometric measurements of dispersion curves,” Opt. Commun. 111, 632–641 (1994). [CrossRef]
  14. H.-T. Shang, “Chromatic dispersion measurement by white-light interferometry on metre-length single-mode optical fibres,” Electron. Lett. 17, 603–605 (1981). [CrossRef]
  15. F. Koch, S. V. Chernikov, and J. R. Taylor, “Dispersion measurement in optical fibres over the entire spectral range from 1.1 μm to 1.7 μm,” Opt. Commun. 175, 209–213 (2000). [CrossRef]
  16. P. Hlubina, M. Szpulak, D. Ciprian, T. Martynkien, and W. Urbanczyk, “Measurement of the group dispersion of the fundamental mode of holey fiber by white-light spectral interferometry,” Opt. Express 15, 11073–11081 (2007). [CrossRef]
  17. J. Jasapara, T. H. Her, R. Bise, R. Windeler, and D. J. DiGiovanni, “Group-velocity dispersion measurements in a photonic bandgap fiber,” J. Opt. Soc. Am. B 20, 1611–1615 (2003). [CrossRef]
  18. J. Y. Lee and D. Y. Kim, “Versatile chromatic dispersion measurement of a single mode fiber using spectral white light interferometry,” Opt. Express 14, 11608–11615 (2006). [CrossRef]
  19. L. Zong, F. Luo, S. Cui, and X. Cao, “Rapid and accurate chromatic dispersion measurement of fiber using asymmetric Sagnac interferometer,” Opt. Lett. 36, 660–662 (2011). [CrossRef]
  20. P. Hlubina, M. Kadulová, and D. Ciprian, “Spectral interferometry-based chromatic dispersion measurement of fibre including the zero-dispersion wavelength,” J. Eur. Opt. Soc. Rapid Pub. 7, 12017-1–12017-5 (2012). [CrossRef]
  21. Q. Ye, Ch. Xu, X. Liu, W. H. Knox, M. F. Yan, R. S. Windeler, and B. Eggleton, “Dispersion measurement of tapered air–silica microstructure fiber by white-light interferometry,” Appl. Opt. 41, 4467–4470 (2002). [CrossRef]
  22. T. M. Kardas and C. Radzewicz, “Broadband near-infrared fibers dispersion measurement using white light interferometry,” Opt. Commun. 282, 4361–4365 (2009). [CrossRef]
  23. L. Lepetit, G. Chériaux, and M. Joffre, “Linear techniques of phase measurement by femtosecond spectral interferometry for applications in spectroscopy,” J. Opt. Soc. Am. B 12, 2467–2474 (1995). [CrossRef]
  24. S. Diddams and J.-C. Diels, “Dispersion measurements with white-light interferometry,” J. Opt. Soc. Am. B 13, 1120–1129 (1996). [CrossRef]
  25. Ch. Dorrer, “Influence of the calibration of the detector on spectral interferometry,” J. Opt. Soc. Am. B 16, 1160–1168 (1999). [CrossRef]
  26. Ch. Dorrer, N. Belabas, J. P. Likforman, and M. Joffre, “Spectral resolution and sampling issues in Fourier-transform spectral interferometry,” J. Opt. Soc. Am. B 17, 1795–1802 (2000). [CrossRef]
  27. G. Genty and H. Ludvigsen, “Measurement of anomalous dispersion in microstructured fibers using spectral modulation,” Opt. Express 12, 929–934 (2004). [CrossRef]
  28. S. K. Debnath, M. P. Kothiyal, and S.-W. Kim, “Evaluation of spectral phase in spectrally resolved white-light interferometry: comparative study of single-frame techniques,” Opt. Laser Eng. 47, 1125–1130 (2009). [CrossRef]
  29. N. K. Berger, B. Levit, and B. Fischer, “Measurement of fiber chromatic dispersion using spectral interferometry with modulation of dispersed laser pulses,” Opt. Commun. 283, 3953–3956 (2010). [CrossRef]
  30. L. Huang, Q. Kemao, B. Pan, and A. K. Asundi, “Comparison of Fourier transform, windowed Fourier transform, and wavelet transform methods for phase extraction from a single fringe pattern in fringe projection profilometry,” Opt. Laser Eng. 48, 141–148 (2010). [CrossRef]
  31. P. Hlubina, J. Luňáček, D. Ciprian, and R. Chlebus, “Windowed Fourier transform applied in the wavelength domain to process the spectral interference signals,” Opt. Commun. 281, 2349–2354 (2008). [CrossRef]
  32. P. Hlubina, J. Luňáček, and D. Ciprian, “Spectral interferometry and reflectometry used for characterization of a multilayer mirror,” Opt. Lett. 34, 1564–1566 (2009). [CrossRef]
  33. Z. Luo, S. Zhang, W. Shen, C. Xia, Q. Ma, X. Liu, and Y. Zhang, “Group delay dispersion measurement of a dispersive mirror by spectral interferometry: comparison of different signal processing algorithms,” Appl. Opt. 50, C239–C245 (2011). [CrossRef]
  34. A. Börzsönyi, A. P. Kovács, M. Görbe, and K. Osvay, “Advances and limitations of phase dispersion measurement by spectrally and spatially resolved interferometry,” Opt. Commun. 281, 3051–3061 (2008). [CrossRef]
  35. S. Février, R. Jamier, J.-M. Blondy, S. L. Semjonov, M. E. Likhachev, M. M. Bubnov, E. M. Dianov, V. F. Khopin, M. Y. Salganskii, and A. N. Guryanov, “Low-loss singlemode large mode area all-silica photonic bandgap fiber,” Opt. Express 14, 562–569 (2006). [CrossRef]
  36. K. Mecseki and A. P. Kovács, “Monitoring of residual higher-order dispersion of pulse compression by spectral interferometry,” AIP Conf. Proc. 1228, 251–256 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited