Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Submicrometer optical tomography by multiple-wavelength digital holographic microscopy

Not Accessible

Your library or personal account may give you access

Abstract

We present a method for submicrometer tomographic imaging using multiple wavelengths in digital holographic microscopy. This method is based on the recording, at different wavelengths equally separated in the k domain, in off-axis geometry, of the interference between a reference wave and an object wave reflected by a microscopic specimen and magnified by a microscope objective. A CCD camera records the holograms consecutively, which are then numerically reconstructed following the convolution formulation to obtain each corresponding complex object wavefront. Their relative phases are adjusted to be equal in a given plane of interest and the resulting complex wavefronts are summed. The result of this operation is a constructive addition of complex waves in the selected plane and destructive addition in the others. Tomography is thus obtained by the attenuation of the amplitude out of the plane of interest. Numerical variation of the plane of interest enables one to scan the object in depth. For the presented simulations and experiments, 20 wavelengths are used in the 480700  nm range. The result is a sectioning of the object in slices 725  nm thick.

© 2006 Optical Society of America

Full Article  |  PDF Article
More Like This
Submicrometer tomography of cells by multiple-wavelength digital holographic microscopy in reflection

Jonas Kühn, Frédéric Montfort, Tristan Colomb, Benjamin Rappaz, Corinne Moratal, Nicolas Pavillon, Pierre Marquet, and Christian Depeursinge
Opt. Lett. 34(5) 653-655 (2009)

Digital holographic microscopy with dual-wavelength phase unwrapping

Daniel Parshall and Myung K. Kim
Appl. Opt. 45(3) 451-459 (2006)

Living specimen tomography by digital holographic microscopy: morphometry of testate amoeba

Florian Charrière, Nicolas Pavillon, Tristan Colomb, Christian Depeursinge, Thierry J. Heger, Edward A.D. Mitchell, Pierre Marquet, and Benjamin Rappaz
Opt. Express 14(16) 7005-7013 (2006)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (10)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (8)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved