OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 48, Iss. 31 — Nov. 1, 2009
  • pp: 5897–5905

Optics InfoBase > Applied Optics > Volume 48 > Issue 31 > Light field image sensors based on the Talbot effect

Light field image sensors based on the Talbot effect

Albert Wang, Patrick Gill, and Alyosha Molnar  »View Author Affiliations

Applied Optics, Vol. 48, Issue 31, pp. 5897-5905 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (1088 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present a pixel-scale sensor that uses the Talbot effect to detect the local intensity and incident angle of light. The sensor comprises two local diffraction gratings stacked above a photodiode. When illuminated by a plane wave, the upper grating generates a self-image at the half Talbot depth. The second grating, placed at this depth, blocks or passes light depending upon incident angle. Several such structures, tuned to different incident angles, are sufficient to extract local incident angle and intensity. Furthermore, arrays of such structures are sufficient to localize light sources in three dimensions without any additional optics.

© 2009 Optical Society of America

OCIS Codes
(040.1240) Detectors : Arrays
(050.2770) Diffraction and gratings : Gratings
(070.6760) Fourier optics and signal processing : Talbot and self-imaging effects
(280.4788) Remote sensing and sensors : Optical sensing and sensors
(110.7348) Imaging systems : Wavefront encoding

ToC Category:
Remote Sensing and Sensors

Original Manuscript: June 4, 2009
Revised Manuscript: September 21, 2009
Manuscript Accepted: September 29, 2009
Published: October 21, 2009

Albert Wang, Patrick Gill, and Alyosha Molnar, "Light field image sensors based on the Talbot effect," Appl. Opt. 48, 5897-5905 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Gershun, “The light field,” J. Math. Phys. 18, 51-151 (1939), translated by G. Timoshenko and P. Moon.
  2. P. Moon and D. E. Spencer, The Photic Field (MIT Press, 1981).
  3. M. Levoy and P. Hanrahan, “Light field rendering,” in Proceedings ACM SIGGRAPH 1996 (Association for Computing Machinery, 1996), pp. 31-42.
  4. R. Ng, “Fourier slice photography,” ACM Trans. Graphics 24, 735-744 (2005). [CrossRef]
  5. H. F. Talbot, “Facts relating to optical science. No. IV,” Philos. Mag. 9, 401-407 (1836).
  6. M. Faraday, “Thoughts on ray vibrations,” Philos. Mag. 28, 346-350 (1846).
  7. E. Adelson and J. Bergen, “The plenoptic function and the elements of early vision,” in Computational Models of Visual Processing, M. Landy and J. A. Movshon, eds. (MIT Press, 1991), pp. 3-20.
  8. E. Adelson and J. Y. A. Wang, “Single lens stereo with a plenoptic camera,” IEEE Trans. Pattern Anal. Mach. Intell. 14, 99-106 (1992). [CrossRef]
  9. A. Kubota, K. Aizawa, and T. Chen, “Reconstructing dense light field from array of multifocus images for novel view synthesis,” IEEE Trans. Image Process. 16, 269-279 (2007). [CrossRef]
  10. B. Wilburn, N. Joshi, V. Vaish, E.-V. Talvala, E. Antunez, A. Barth, A. Adams, M. Horowitz, and M. Levoy, “High performance imaging using large camera arrays,” in Proceedings ACM SIGGRAPH 2005 (Association for Computing Machinery, 2005), pp. 765-776.
  11. A. Isaksen, L. McMillan, and S. J. Gortler, “Dynamically reparameterized light fields,” in Proceedings ACM SIGGRAPH 2000 (Association for Computing Machinery, 2000), pp. 297-306.
  12. A. Veeraraghavan, R. Raskar, A. Agrawal, A. Mohan, and J. Tumblin, “Dappled photography: mask enhanced cameras for heterodyned light fields and coded aperture refocusing,” ACM Trans. Graphics 26, 69-80 (2007).
  13. K. Fife, A. E. Gamal, and H.-S. P. Wong, “A 3D multi-aperture image sensor architecture,” in Custom Integrated Circuits Conference (IEEE, 2006), pp. 281-284.
  14. S. J. Gortler, R. Grzeszczuk, R. Szeliski, and M. F. Cohen, “The lumigraph,” in Proceedings ACM SIGGRAPH 1996 (Association for Computing Machinery, 1996), pp. 43-54.
  15. M. Levoy, R. Ng, A. Adams, M. Footer, and M. Horowitz, “Light field microscopy,” in Proceedings ACM SIGGRAPH 2006 (Association for Computing Machinery, 2006), pp. 924-934
  16. Lord Rayleigh, “On copying diffraction gratings, and on some phenomena connected therewith,” Philos. Mag. 11, 196-205 (1881).
  17. E. A. Hiedemann and M. A. Breazeale, “Secondary interference in the Fresnel zone of gratings,” J. Opt. Soc. Am. 49, 372-375 (1959). [CrossRef]
  18. J. T. Winthrop and C. R. Worthington, “Theory of Fresnel images: I. Plane periodic objects in monochromatic light,” J. Opt. Soc. Am. 55, 373-381 (1965). [CrossRef]
  19. W. D. Montgomery, “Self-imaging objects of infinite aperture,” J. Opt. Soc. Am. 57, 772-775 (1967). [CrossRef]
  20. A. W. Lohmann and D. E. Silva, “An interferometer based on the Talbot effect,” Opt. Commun. 2, 413-415 (1971). [CrossRef]
  21. J. Ojeda-Castañeda and E. E. Sicre, “Tunable bandstop filter for binary objects: a self-imaging technique,” Opt. Commun. 47, 183-186 (1983). [CrossRef]
  22. A. W. Lohmann and J. A. Thomas, “Making an array illuminator based on the Talbot effect,” Appl. Opt. 29, 4337-4340 (1990). [CrossRef]
  23. N. H. Salama, D. Patrignani, L. di Pasquale, and E. E. Sicre, “Wavefront sensor using the Talbot effect,” Opt. Laser Technol. 31, 269-272 (1999). [CrossRef]
  24. C. Siegel, F. Loewenthal, and J. E. Balmer, “A wavefront sensor based on the fractional Talbot effect,” Opt. Commun. 194, 265-275 (2001). [CrossRef]
  25. P. Chavel and T. C. Strand, “Range measurement using Talbot diffraction imaging of gratings,” Appl. Opt. 23, 862-871(1984). [CrossRef]
  26. J. R. Leger and M. A. Snyder, “Real-time depth measurement and display using Fresnel diffraction and white-light processing,” Appl. Opt. 23, 1655-1670 (1984). [CrossRef]
  27. H. O. Carmesin and D. Goldbeck, “Depth map by convergent 3D Talbot interferometry,” Optik (Jena) 108, 101-116 (1998).
  28. M. Testorf, J. Jahns, N. A. Khilo, and A. M. Goncharenko, “Talbot effect for oblique angle of light propagation,” Opt. Commun. 129, 167-172 (1996). [CrossRef]
  29. S. Teng, Y. Tan, and C. Cheng, “Quasi-Talbot effect of the high-density grating in near field,” J. Opt. Soc. Am. A 25, 2945-2951 (2008). [CrossRef]
  30. I. I. Smolyaninov and C. C. Davis, “Apparent superresolution in near-field optical imaging of periodic gratings,” Opt. Lett. 23, 1346-1348 (1998). [CrossRef]
  31. K. Fife, A. E. Gamal, and H.-S. P. Wong, “A 0.5 μm pixel frame transfer CCD imager sensor in 110 nm CMOS,” in IEEE International Electron Devices Meeting (IEEE, 2007), pp. 1003-1006.
  32. M. S. Chapman, C. R. Ekstrom, T. D. Hammond, J. Schmiedmayer, B. E. Tannian, S. Wehinger, and D. E. Pritchard, “Near-field imaging of atom diffraction gratings: the atomic Talbot effect,” Phys. Rev. A 51, R14-R17 (1995). [CrossRef]
  33. S. Teng, L. Liu, J. Zu, Z. Luan, and D. Liu, “Uniform theory of the Talbot effect with partially coherent light illumination,” J. Opt. Soc. Am. A 20, 1747-1754 (2003). [CrossRef]
  34. Y. Lu, C. Zhou, S. Wang, and B. Wang, “Polarization-dependent Talbot effect,” J. Opt. Soc. Am. A 23, 2154-2160(2006). [CrossRef]
  35. K. Fife, A. E. Gamal, and H.-S. P. Wong, “A 3M pixel multi-aperture image sensor with 0.7 μm pixels in 0.11 μm CMOS,” in IEEE ISSCC Digest of Technical Papers (IEEE, 2008), pp. 48-49.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited