OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 29, Iss. 7 — Mar. 1, 1990
  • pp: 959–974

Optics InfoBase > Applied Optics > Volume 29 > Issue 7 > Two-channel polarization modulation ellipsometer

Two-channel polarization modulation ellipsometer

Gerald E. Jellison, Jr. and F. A. Modine  »View Author Affiliations

Applied Optics, Vol. 29, Issue 7, pp. 959-974 (1990)

View Full Text Article

Enhanced HTML    Acrobat PDF (2164 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A new wavelength-scanning two-channel polarization modulation ellipsometer is described, where a photo-elastic modulator is used and the analyzed light is separated into orthogonally polarized beams using a Wollaston prism. Both beams are detected using phototubes whose bias voltage is dynamically controlled for constant dc. The dc from each phototube is measured with a digital voltmeter, and the fundamental and second harmonic of the phototube current are measured using individual lock-in amplifiers. All three of the associated ellipsometric parameters (N = cos2ψ, S = sin2ψ sinΔ, and C = sin2ψ cosΔ) can be determined simultaneously in a single scan. The versatility of the instrument is demonstrated by the determination of the optical functions of Si from 238 to 652 nm (5.3–1.9 eV).

© 1990 Optical Society of America

Original Manuscript: June 28, 1989
Published: March 1, 1990

Gerald E. Jellison and F. A. Modine, "Two-channel polarization modulation ellipsometer," Appl. Opt. 29, 959-974 (1990)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. M. A. Azzam, N. M. Bashara, Ellipsometry and Polarized Light (North-Holland, Amsterdam, 1977).
  2. S. N. Jasperson, S. E. Schnatterly, “An Improved Method for High Reflectivity Ellipsometry Based on a New Polarization Modulation Technique,” Rev. Sci. Instrum. 40, 761–767 (1969); Rev. Sci. Instrum. 41, 152 (1970). [CrossRef]
  3. G. E. Jellison, F. A. Modine, “Optical Constants for Silicon at 300 and 10 K Determined from 1.64 to 4.73 eV by Ellipsometry,” J. Appl. Phys. 53, 3745–3753 (1982). [CrossRef]
  4. V. M. Bermudez, V. H. Ritz, “Wavelength-Scanning Polarization-Modulation Ellipsometry: Some Practical Considerations,” Appl. Opt. 17, 542–552 (1978). [CrossRef] [PubMed]
  5. B. Drevillon, J. Perrin, R. Marbot, A. Violet, J. L. Dalby, “Fast Polarization Modulated Ellipsometer Using a Microprocessor System for Digital Fourier Analysis,” Rev. Sci. Instrum. 53, 969–977 (1982). [CrossRef]
  6. D. E. Aspnes, A. A. Studna, “High Precision Scanning Ellipsometer,” Appl. Opt. 14, 220–228 (1975). [PubMed]
  7. F. Ferrieu, J. L. Stehle, F. Bernoux, O. Thomas, Mat. Res. Symp. Proc. 101, 403 (1988). [CrossRef]
  8. G. H. Bu-Abbud, N. M. Bashara, J. A. Woollam, “Variable Wavelength, Variable Angle Ellipsometry Including a Sensitivities Test,” Thin Solid Films 137, 27–41 (1986). [CrossRef]
  9. J. F. Archard, P. L. Clegg, A. M. Taylor, “Photoelectric Analysis of Elliptically Polarized Light,” Proc. Phys. Soc. London Ser. B 65, 758 (1952). [CrossRef]
  10. N. V. Smith, “Optical Constants of Sodium and Potassium from 0.5 to 4.0 eV by Split-Beam Ellipsometry,” Phys. Rev. B 183, 634–644 (1969). [CrossRef]
  11. R. M. A. Azzam, “Division-of Amplitude Photopolarimeter (DOAP) for the Simultaneous Measurement of all Four Stokes Parameters of Light,” Opt. Acta 29, 685–689 (1982); “Beam-Splitters for the Division-of-Amplitude Photopolarimeter,” Opt. Acta 32, 1407–1412 (1985). [CrossRef]
  12. G. E. Jellison, D. H. Lowndes, “Time-Resolved Ellipsometry,” Appl. Opt. 24, 2948–2955 (1985). [CrossRef] [PubMed]
  13. A. Moritani, J. Nakai, “High-Speed Retardation Modulation Ellipsometry,” Appl. Opt. 21, 3231–3232 (1982); A. Moritani, C. Harmaguchi, “High-Speed Ellipsometry of Arsenic-Implanted Si During cw Laser Annealing,” Appl. Phys. Lett. 46, 746–748 (1985). [CrossRef] [PubMed]
  14. D. E. Aspnes, J. B. Theeten, “Optical Properties of the Interface Between Si and its Thermally Grown Oxide,” Phys. Rev. Lett. 43, 1046–1050 (1979); “Spectroscopic Analysis of the Interface Between Si and its Thermally Grown Oxide,” J. Electrochem. Soc. 127, 1359–1365 (1980). [CrossRef]
  15. D. E. Aspnes, A. Studna, “Dielectric Functions and Optical Parameters of Si, Ge, GaP, GaAs, InP, InAs, and InSb from 1.5 to 6.0 eV,” Phys. Rev. B 27, 985–1009 (1983). [CrossRef]
  16. G. E. Jellison, F. A. Modine, “Optical Absorption of Silicon Between 1.6 and 4.7 at Elevated Temperatures,” Appl. Phys. Lett. 41, 180–182 (1982). [CrossRef]
  17. G. E. Jellison, F. A. Modine, “Optical Functions of Silicon Between 1.7 and 4.7 eV at Elevated Temperatures,” Phys. Rev. B 27, 7466–7472 (1983). [CrossRef]
  18. G. E. Jellison, H. H. Burke, “The Temperature Dependence of the Refractive Index of Silicon at Elevated Temperatures at Several Laser Wavelengths,” J. Appl. Phys. 60, 841–843 (1986). [CrossRef]
  19. P. Lautenschlager, M. Garriga, L. Vina, M. Cardona, “Temperature Dependence of the Dielectric Function and Interband Critical Points in Silicon,” Phys. Rev. B 36, 4821–4830 (1987). [CrossRef]
  20. P. S. Hauge, “Recent Developments in Instrumentation in Ellipsometry,” Surf. Sci. 96, 108–140 (1980). [CrossRef]
  21. G. E. Jellison, F. A. Modine, “Accurate Calibration of a Photoelastic Modulator in a Polarization Modulation Ellipsometry Experiment,” Proc. Soc. Photo-Opt. Instrum. Eng. 1166, 231–241 (1990).
  22. O. Acher, E. Bigan, B. Drevillon, “Improvements of Phase-Modulated Ellipsometry,” Rev. Sci. Instrum. 60, 65–77 (1989). [CrossRef]
  23. G. E. Jellison, F. A. Modine, “A Simple Implementation of a Power Supply for Constant Phototube Current in Light Modulation Spectroscopy,” Rev. Sci. Instrum. 60, 3345 (1989). [CrossRef]
  24. R. C. O’Handley, “Modified Jones Calculus for the Analysis of Errors in Polarization-Modulation Ellipsometry,” J. Opt. Soc. Am. 63, 523–528 (1973). [CrossRef]
  25. R. M. A. Azzam, “Alternate Arrangement and Analysis of Systematic Errors for Dynamic Photometric Ellipsometers Employing an Oscillating-Phase Retarder,” Optik 45, 209–218 (1976).
  26. F. A. Modine, G. E. Jellison, G. R. Gruzalski, “Errors in Ellipsometry Measurements Made with a Photoelastic Modulator,” J. Opt. Soc. Am. 73, 892–900 (1983). [CrossRef]
  27. D. E. Aspnes, A. A. Studna, “Chemical Etching and Cleaning Procedures for Si, Ge, and Some III-V Compound Semiconductors,” Appl. Phys. Lett. 39, 316–318 (1981). [CrossRef]
  28. W. C. Dash, R. Newman, “Intrinsic Optical Absorption in Single-Crystal Germanium and Silicon at 77°K and 300°K,” Phys. Rev. 99, 1151–1155 (1955). [CrossRef]
  29. I. H. Malitson, “Interspecimen Comparison of the Refractive Index of Fused Silica,” J. Opt. Soc. Am. 55, 1205–1209 (1965). [CrossRef]
  30. G. E. Jellison, F. A. Modine, “Optical Nature on Interface Layers: a Comparative Study of the Si–SiO2 Interface,” J. Opt. Soc. Am. 72, 1253–1257 (1982). [CrossRef]
  31. E. A. Taft, L. Cordes, “Optical Evidence for a Silicon–Silicon Oxide Interlayer,” J. Electrochem. Soc. 126, 131–134 (1979). [CrossRef]
  32. D. A. G. Bruggeman, “Berechnung verschiedener physikalischer konstanten vor heterogenen substanzen,” Ann. Phys. Leipzig 24, 636 (1935). [CrossRef]
  33. R. H. Muller, “Definitions and Conventions in Ellipsometry,” Surf. Sci. 16, 14–33 (1969); P. S. Hauge, R. H. Muller, C. G. Smith, “Conventions and Formulas for Using the Mueller-Stokes Calculus in Ellipsometry,” Surf. Sci. 96, 81 (1980). [CrossRef]
  34. M. Abramowitz, I. A. Stegun, Handbook of Mathematical Functions (U.S. National Bureau of Standards, Applied Mathematics Series Vol. 55, 1964), p. 361.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited