OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 36, Iss. 31 — Nov. 1, 1997
  • pp: 8190–8198

Optics InfoBase > Applied Optics > Volume 36 > Issue 31 > Two-modulator generalized ellipsometry: theory

Two-modulator generalized ellipsometry: theory

G. E. Jellison and F. A. Modine  »View Author Affiliations

Applied Optics, Vol. 36, Issue 31, pp. 8190-8198 (1997)

View Full Text Article

Acrobat PDF (312 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A new ellipsometer is described that uses two photoelastic modulator–polarizer pairs, where the photoelastic modulators are operating at differing resonant frequencies. The time-dependent intensity of the light beam is extremely complicated but can be analyzed so that all elements of the sample Mueller matrix are obtained. For a given configuration, nine of the Mueller matrix elements can be measured at any one time; the other seven elements are accessible when the azimuthal angles of the photoelastic modulators are changed. The single-configuration measurement is often sufficient to characterize a number of real situations completely, such as film growth in a vacuum environment, anisotropic samples, and simple depolarization.

© 1997 Optical Society of America

G. E. Jellison and F. A. Modine, "Two-modulator generalized ellipsometry: theory," Appl. Opt. 36, 8190-8198 (1997)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. M. M. Decker and H. Mueller, “Transmitting data by light modulation,” Control Eng. 4, 63–67 (1957).
  2. M. Billardon and J. Badoz, “Birefringence modulator,” C. R. Acad. Sci. (Paris) 262B, 1672–1675 (1966).
  3. L. F. Mollenauer, D. Downie, H. Engstrom, and W. B. Grant, “Stress plate optical modulator for circular dichroism measurements,” Appl. Opt. 8, 661–664 (1969).
  4. S. N. Jasperson and S. E. Schnatterly, “An improved method for high reflectivity ellipsometry based on a new polarization modulation technique,” Rev. Sci. Instrum. 40, 761–767 (1969); Errata 41, 152 (1970).
  5. J. C. Kemp, “Piezo-optical birefringence modulators: new use for a long-known effect,” J. Opt. Soc. Am. 59, 950–954 (1969).
  6. G. E. Jellison, Jr., and F. A. Modine, “Accurate calibration of a photoelastic modulator in a polarization modulation ellipsometry experiment,” in Polarization Considerations for Optical Systems II, R. A. Chipman, ed., Proc. Soc. Photo-Opt. Instrum. Eng. 1166, 231–241 (1989).
  7. J. P. Badoz, M. P. Silverman, and J. C. Canit, “New model of a photoelastic modulator with distributed birefringence,” in Polarization Considerations for Optical Systems II, R. A. Chipman, ed., Proc. Soc. Photo-Opt. Instrum. Eng. 1166, 478–488 (1989); “Wave propagation through a medium with static and dynamic birefringence: theory of the photoelastic modulator,” J. Opt. Soc. Am. A 7, 672–682 (1990).
  8. F. A. Modine and G. E. Jellison, Jr., “Errors in polarization measurements due to static retardation in photoelastic modulators,” Appl. Phys. Commun. 12, 121–139 (1993).
  9. V. M. Bermudez and V. H. Ritz, “Wavelength-scanning polarization-modulation ellipsometry: some practical considerations,” Appl. Opt. 17, 542–552 (1978).
  10. G. E. Jellison, Jr., and F. A. Modine, “Optical constants for silicon at 300 and 10 K determined from 1.64 to 4.73 eV by ellipsometry,” J. Appl. Phys. 53, 3745–3753 (1982).
  11. F. A. Modine, G. E. Jellison, Jr., and G. R. Gruzalski, “Errors in ellipsometry measurements made with a photoelastic modulator,” J. Opt. Soc. Am. 73, 892–900 (1983).
  12. B. Drevillon, J. Perrin, R. Marbot, A. Violet, and J. L. Dalby, “Fast polarization modulated ellipsometer using a microprocessor system for digital Fourier analysis,” Rev. Sci. Instrum. 53, 969–977 (1982).
  13. O. Acher, E. Bigan, and B. Drevillon, “Improvements of phase-modulated ellipsometry,” Rev. Sci. Instrum. 60, 65–77 (1989).
  14. G. E. Jellison, Jr., and F. A. Modine, “Two-channel polarization modulation ellipsometer,” Appl. Opt. 29, 959–974 (1990).
  15. D. E. Aspnes and A. A. Studna, “High precision scanning ellipsometer,” Appl. Opt. 14, 220–228 (1975).
  16. G. H. Bu-Abbud, N. M. Bashara, and J. A. Woolam, “Variable wavelength, variable angle ellipsometry including a sensitivities test,” Thin Solid Films 137, 27–41 (1986).
  17. P. Chindaudom and K. Vedam, “Determination of the optical function n(λ) of vitreous silica by spectroscopic ellipsometry with an achromatic compensator,” Appl. Opt. 32, 6391–6397 (1993).
  18. P. S. Hauge, “Recent developments in instrumentation in ellipsometry,” Surf. Sci. 96, 108–140 (1980).
  19. R. A. Chipman, “Polarimetry,” in Handbook of Optics, Vol. 2, 2nd ed., M. Bass, ed. (McGraw-Hill, New York, 1995), Chap. 22.
  20. R. M. A. Azzam, “Ellipsometry,” in Handbook of Optics, Vol. 2, 2nd ed., M. Bass, ed. (McGraw-Hill, New York, 1995), Chap. 27.
  21. R. M. A. Azzam, “Photopolarimetric measurement of the Mueller matrix by Fourier analysis of a single detected signal,” Opt. Lett. 2, 148–150 (1978).
  22. P. S. Hauge, “Mueller matrix ellipsometry with imperfect compensators,” J. Opt. Soc. Am. 68, 1519–1528 (1978).
  23. D. H. Goldstein, “Mueller matrix dual-rotating retarder polarimeter,” Appl. Opt. 31, 6676–6683 (1992).
  24. D. H. Goldstein and R. A. Chipman, “Error analysis of a Mueller matrix polarimeter,” J. Opt. Soc. Am. 7, 693–700 (1990).
  25. R. C. Thompson, J. R. Bottinger, and E. S. Fry, “Measurement of polarized light interactions via the Mueller matrix,” Appl. Opt. 19, 1323–1332 (1978).
  26. E. Compain and B. Drevillon, “Complete Mueller Matrix measurement with a high frequency coupled-phase modulator,” to be published in Thin Solid Films.
  27. B. Drevillon, Ecole Polytechnique, 91128 Palaiseau, France (personal communication, 1997).
  28. R. M. A. Azzam, “Division-of-amplitude photopolarimeter (DOAP) for the simultaneous measurement of all four Stokes parameters of light,” Opt. Acta 29, 767–777 (1985).
  29. R. Anderson, “Measurement of Mueller matrices,” Appl. Opt. 31, 11–13 (1992).
  30. G. E. Jellison, Jr., and F. A. Modine, “Two-modulator generalized ellipsometry: experiment and calibration,” Appl. Opt. 8184–8189 (1997).
  31. D. G. M. Anderson and R. Barakat, “Necessary and sufficient conditions for a Mueller matrix to be derivable from a Jones matrix,” J. Opt. Soc. Am. A 11, 2305–2319 (1994).
  32. R. M. A. Azzam and N. M. Bashara, Ellipsometry and Polarized Light (North-Holland, Amsterdam, 1977).
  33. D. S. Kliger, J. W. Lewis, and C. E. Randall, Polarized Light in Optics and Spectroscopy (Academic, New York, 1990).
  34. G. E. Jellison, Jr., “The calculation of thin film parameters from spectroscopic ellipsometry data,” Thin Solid Films 290–291 40–45 (1996).
  35. G. E. Jellison, Jr., and J. W. McCamy, “Sample depolarization effects from thin films of ZnS of GaAs as measured by spectroscopic ellipsometry,” Appl. Phys. Lett. 61, 512–514 (1992).
  36. R. Joerger, K. Forcht, A. Gombert, M. Köhl, and W. Graf, “Influence of incoherent superposition of light on ellipsometric coefficients,” Appl. Opt. 36, 319–327 (1997).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited