OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 40, Iss. 12 — Apr. 20, 2001
  • pp: 2031–2042

Optics InfoBase > Applied Optics > Volume 40 > Issue 12 > Ammonia monitoring near 1.5 µm with diode-laser absorption sensors

Ammonia monitoring near 1.5 µm with diode-laser absorption sensors

Michael E. Webber, Douglas S. Baer, and Ronald K. Hanson  »View Author Affiliations

Applied Optics, Vol. 40, Issue 12, pp. 2031-2042 (2001)

View Full Text Article

Enhanced HTML    Acrobat PDF (256 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We investigated ammonia spectroscopy near 1.5 µm to select transitions appropriate for trace ammonia detection in air-quality and combustion emissions-monitoring applications using diode lasers. Six ammonia features were selected for these trace-gas detection applications based on their transition strengths and isolation from interfering species. The strengths, positions, and lower-state energies for the lines in each of these features were measured and compared with values published in the literature. Ammonia slip was measured in the exhaust above an atmospheric pressure premixed ethylene–air burner to demonstrate the feasibility of the in situ diode-laser sensor.

© 2001 Optical Society of America

OCIS Codes
(300.6260) Spectroscopy : Spectroscopy, diode lasers
(300.6390) Spectroscopy : Spectroscopy, molecular

Original Manuscript: July 10, 2000
Revised Manuscript: December 2, 2000
Published: April 20, 2001

Michael E. Webber, Douglas S. Baer, and Ronald K. Hanson, "Ammonia monitoring near 1.5 µm with diode-laser absorption sensors," Appl. Opt. 40, 2031-2042 (2001)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. K. Lyon, J. E. Hardy, “Discovery and development of the Thermal DeNOx process,” Ind. Eng. Chem. Fundam. 25, 19–24 (1986). [CrossRef]
  2. K. Hjuler, K. Dam-Johansen, “Design of a flue gas probe for ammonia measurement,” Anal. Chim. Acta 282, 703–709 (1993). [CrossRef]
  3. H. Kassman, L.-E. Åmand, B. Leckner, “Secondary effects in sampling ammonia during measurements in a circulating fluidised-bed combustor,” J. Inst. Energy 70, 95–101 (1997).
  4. V. Nagali, S. I. Chou, D. S. Baer, R. K. Hanson, J. Segall, “Tunable diode-laser absorption measurements of methane at elevated temperatures,” Appl. Opt. 35, 4026–4032 (1996). [CrossRef] [PubMed]
  5. R. R. Gamache, Center for Atmospheric Research, University of Massachusetts, Lowell, Lowell, Mass. (personal communication, 1999).
  6. A. Goldman, R. R. Gamache, A. Perrin, J.-M. Flaud, C. P. Rinsland, L. S. Rothman, “HITRAN partition functions and weighted transition-moments squared,” J. Quant. Spectrosc. Radiat. Transfer 66, 455–486 (2000). [CrossRef]
  7. R. S. McDowell, “Rotational partition functions for symmetric-top molecules,” J. Chem. Phys. 93, 2801–2811 (1990). [CrossRef]
  8. R. J. Willey, M. F. Fox, “Ammonia decomposition over 430-SS etched metal catalysts,” J. Catal. 112, 590–594 (1988). [CrossRef]
  9. N. Jacquinet-Husson, E. Arie, J. Ballard, A. Barbe, G. Bjoraker, B. Bonnet, L. R. Brown, C. Camy-Peyret, J. P. Champion, A. Chedin, A. Chrusin, C. Clerbaux, G. Duxbury, J.-M. Flaud, N. Fourrie, A. Fayt, G. Graner, R. Gamache, A. Goldman, V. Golovko, G. Guelachvili, J.-M. Hartmann, J. C. Hilico, J. Hillman, G. Lefevre, E. Lellouch, S. N. Mikhailenko, O. V. Naumenko, V. Nemtchinov, D. Newnham, A. Nikitin, J. Orphal, A. Perrin, D. C. Reuter, C. P. Rinsland, L. Rosenmann, L. S. Rothman, N. A. Scott, J. Selby, L. N. Sinitsa, J. M. Sirota, A. M. Smith, K. M. Smith, V. G. Tyuterev, R. H. Tipping, S. Urban, P. Varanasi, M. Weber, “The 1997 spectroscopic GEISA databank,” J. Quant. Spectrosc. Radiat. Transfer 62, 205–254 (1999). [CrossRef]
  10. L. S. Rothmann, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattsin, K. Yoshino, K. V. Chance, K. W. Juck, L. R. Brown, V. Nemtchechin, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN atmospheric workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998). [CrossRef]
  11. M. Ohtsu, H. Kotani, H. Tagawa, “Spectral measurements of NH3 and H2O for pollutant gas monitoring by 1.5-µm InGaAsP/InP lasers,” Jpn. J. Appl. Phy. 22, 1553–1557 (1983). [CrossRef]
  12. T. Yanagawa, S. Saito, Y. Yamamoto, “Frequency stabilization of 1.5-µm InGaAsP distributed feedback laser to NH3 absorption lines,” Appl. Phys. Lett. 45, 826–828 (1984). [CrossRef]
  13. M. Fehér, P. A. Martin, A. Rohrbacher, A. M. Soliva, J. P. Maier, “Inexpensive near-infrared diode-laser-based detection system for ammonia,” Appl. Opt. 32, 2028–2030 (1993). [CrossRef] [PubMed]
  14. L. I. Gurinovich, V. P. Duraev, V. A. Ivanov, N. K. Nikeenko, “Application of near IR band injection lasers for the control of ammonia content in air,” J. Appl. Spectros. 58(3–4), 240–245 (1993).
  15. T. Wu, H. An, P. Jiang, Y. Fang, S. Tao, P. Ye, “Spectral measurements of NH3 absorption lines by a 1.5-µm grating-external-cavity semiconductor laser,” Opt. Lett. 18, 729–731 (1993). [CrossRef] [PubMed]
  16. M. Fehér, Y. Jiang, J. P. Maier, A. Miklós, “Optoacoustic trace-gas monitoring with near-infrared diode lasers,” Appl. Opt. 33, 1655–1658 (1994). [CrossRef] [PubMed]
  17. H. Ahlberg, S. Lundqvist, R. Tell, T. Andersson, “Industrialized high sensitivity fiber-optic near-IR diode laser based gas analysis system,” in Tunable Diode Laser Spectroscopy, Lidar, and DIAL Techniques for Environmental and Industrial Measurements, H. I. Schiff, A. Fried, D. K. Killinger, eds., Proc. SPIE2112, 118–129 (1994). [CrossRef]
  18. H. Ahlberg, S. Lundqvist, R. Tell, T. Andersson, “Laser spectroscopy for in situ ammonia monitoring,” Spectros. Eur. 6(2), 22–26 (1994).
  19. J. P. Dakin, H. O. Edwards, B. H. Weigl, “Latest developments in gas sensing using correlation spectroscopy,” in Chemical, Biochemical, and Environmental Fiber Sensors VII, A. V. Scheggi, ed., Proc. SPIE2508, 2–17 (1995). [CrossRef]
  20. G. Monlux, J. A. Brand, P. Zmarzly, M. Walker, K. W. Groff, G. J. Fetzer, N. Goldstein, F. Bein, S. C. Richtsmeier, J. Lee, “In situ ammonia analyzer for process control and environmental monitoring,” in Advanced Technologies for Environmental Monitoring and Remediation, T. V.- Dinh, ed., Proc. SPIE2835, 236–247 (1996).
  21. G. Modugno, C. Corsi, “Water vapour and carbon dioxide interference in the high sensitivity detection of NH3 with semiconductor diode lasers at 1.5 µm,” Infrared Phy. Technol. 40, 93–99 (1999). [CrossRef]
  22. S. Urban, “High-resolution infrared spectroscopy of ammonia: a survey of theory and analyses of spectra,” J. Quant. Spectrosc. Radiat. Transfer 48, 675–684 (1992). [CrossRef]
  23. W. S. Benedict, E. K. Plyler, “Vibration-rotation bands of ammonia: II. The molecular dimensions and harmonic frequencies of ammonia and deuterated ammonia,” Can. J. Phys. 35, 1235–1241 (1957). [CrossRef]
  24. H. J. Unger, “Infrared absorption bands of ammonia,” Phys. Rev. 43, 123–128 (1933). [CrossRef]
  25. W. S. Benedict, E. K. Plyler, E. D. Tidwell, “Vibration-rotation bands of ammonia: 1. The combination bands ν2 + (ν1, ν3),” J. Res. Natl. Bur. Stand. 61(3), 123–147 (1958). [CrossRef]
  26. W. S. Benedict, E. K. Plyler, E. D. Tidwell, “Vibration-rotation bands of ammonia: III. The region 3.2-4.3 microns,” J. Chem. Phys. 29, 829–845 (1958). [CrossRef]
  27. J. S. Garing, H. H. Nielsen, K. Narahari Rao, “The low-frequency vibration rotation bands of the ammonia molecule,” J. Mol. Spectros. 3, 496–527 (1959). [CrossRef]
  28. P. Varanasi, “Shapes and widths of ammonia lines collision-broadened by hydrogen,” J. Quant. Spectrosc. Radiat. Transfer 12, 1283–1289 (1972). [CrossRef]
  29. J. S. Margolis, S. Sarangi, “Measurement of hydrogen- and self-broadened half-widths of ammonia at 200 and 300 °K,” J. Quant. Spectrosc. Radiat. Transfer 16, 405–408 (1976). [CrossRef]
  30. S. Sarangi, “Analysis of the ν3 + ν4 band of ammonia,” J. Quant. Spectrosc. Radiat. Transfer 18, 257–288 (1977). [CrossRef]
  31. S. Sarangi, “Analysis of line intensities in the two-micron band of ammonia,” J. Quant. Spectrosc. Radiat. Transfer 18, 289–293 (1977). [CrossRef]
  32. Š. Urban, R. D’Cunha, K. Narahari Rao, D. Papoušek, “The Δk = ±2 ‘forbidden band’ and inversion-rotation energy levels of ammonia,” Can. J. Phys. 62, 1775–1791 (1984). [CrossRef]
  33. E. Lellouch, N. Lacome, G. Guelachvili, G. Tarrago, T. Encrenaz, “Ammonia: experimental absolute linestrengths and self-broadening parameters in the 1800- to 2100-cm-1 range,” J. Mol. Spectros. 124, 333–347 (1987). [CrossRef]
  34. G. Guelachvili, A. H. Abdullah, N. Tu, K. Narahari Rao, Š. Urban, D. Papoušek, “Analysis of high-resolution Fourier transform spectra of 14NH3 at 3.0 µm,” J. Mol. Spectros. 133, 345–364 (1989). [CrossRef]
  35. Š. Urban, N. Tu, K. Narahari Rao, G. Guelachvili, “Analysis of high-resolution Fourier transform spectra of 14NH3 at 2.3 µm,” J. Mol. Spectros. 133, 312–330 (1989). [CrossRef]
  36. B. B. Radak, J. I. Lunine, D. M. Hunten, G. H. Atkinson, “Line intensities in the 647.5-nm ammonia band at low temperatures determined by intracavity laser spectroscopy,” J. Quant. Spectrosc. Radiat. Transfer 53, 519–526 (1995).
  37. L. R. Brown, J. S. Margolis, “Empirical line parameters of NH3 from 4791 to 5294 cm-1,” J. Quant. Spectrosc. Radiat. Transfer 56(2), 283–294 (1996). [CrossRef]
  38. L. Lundsberg-Nielsen, F. Hegelund, F. M. Nicolaisen, “Analysis of the high-resolution spectrum of ammonia (14NH3) in the near-infrared region, 6400-6900 cm-1,” J. Mol. Spectros. 162, 230–245 (1993). [CrossRef]
  39. L. Lundsberg-Nielsen, “Molecular overtone spectroscopy on ammonia,” Ph.D. dissertation (Department of Chemistry, University of Copenhagen, Copenhagen, Denmark, and the Danish Institute of Fundamental Metrology, Lygnby, Denmark, 1995).
  40. L. Sandström, H. Ahlberg, S. Höjer, A. G. Larsson, S. Bäckström, “Near-infrared semiconductor lasers for gas analysis operating in the 2-µm range,” in Conference on Lasers and Electro-Optics, Vol. 9 of OSA 1996 Technical Digest Series (Optical Society of America, Washington, D.C., 1996), pp. 239–240.
  41. E. R. Furlong, R. M. Mihalcea, M. E. Webber, D. S. Baer, R. K. Hanson, “Diode-laser sensors for real-time control of pulsed combustion systems,” AIAA J. 37, 732–737 (1999). [CrossRef]
  42. G. Herzberg, Molecular Spectra and Molecular Structure II: Infrared and Raman Spectra of Polyatomic Molecules (Krieger, Malabax, Fla., 1991).
  43. Š. Urban, D. Papoušek, V. Malathy Devi, B. Fridovich, R. D’Cunha, K. Narahari Rao, “Transition dipole matrix elements for 14NH3 from the line intensities of the 2ν2 and ν4 bands,” J. Mol. Spectros. 106, 38–55 (1984). [CrossRef]
  44. A. S. Pine, V. N. Markov, G. Buffa, O. Tarrini, “N2, O2, H2, Ar and He broadening in the ν1 band of NH3,” J. Quant. Spectrosc. Radiat. Transfer 50(4), 337–348 (1993). [CrossRef]
  45. R. M. Mihalcea, “CO and CO2 measurements in combustion environments using external cavity diode lasers,” Ph.D. dissertation (High Temperature Gasdynamics Laboratory, Department of Mechanical Engineering, Stanford University, Stanford, Calif., 1999).
  46. P. C. D. Hobbs, “Ultrasensitive laser measurements without tears,” Appl. Opt. 36, 903–920 (1997). [CrossRef] [PubMed]
  47. J. A. Silver, “Frequency-modulation spectroscopy for trace species detection: theory and comparison among experimental methods,” Appl. Opt. 31, 707–717 (1992). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited