OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 43, Iss. 15 — May. 20, 2004
  • pp: 3103–3109

Optics InfoBase > Applied Optics > Volume 43 > Issue 15 > Atmospheric transmittance of an absorbing gas. 6. OPTRAN status report and introduction to the NESDIS/NCEP community radiative transfer model

Atmospheric transmittance of an absorbing gas. 6. OPTRAN status report and introduction to the NESDIS/NCEP community radiative transfer model

Thomas J. Kleespies, Paul van Delst, Larry M. McMillin, and John Derber  »View Author Affiliations

Applied Optics, Vol. 43, Issue 15, pp. 3103-3109 (2004)

View Full Text Article

Enhanced HTML    Acrobat PDF (145 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Since the publication of the Optical Path Transmittance (OPTRAN) algorithm [Appl. Opt. 34, 8396 (1995)], much of the code and implementation has been refined and improved. The predictor set has been expanded, an objective method to select optimal predictors has been established, and the two-interpolation method has been discarded for a single-interpolation method. The OPTRAN coefficients have been generated for a wide range of satellites and instruments. The most significant new development is the Jacobian-K-matrix version of OPTRAN, which is currently used for operational direct radiance assimilation in both the Global Data Analysis System and the ETA Data Analysis System at the National Oceanographic and Atmospheric Administration, National Weather Service, National Centers for Environmental Prediction Environmental Modeling Center. This paper documents these improvements and serves as a record of the current status of the operational OPTRAN code.

© 2004 Optical Society of America

OCIS Codes
(010.1300) Atmospheric and oceanic optics : Atmospheric propagation
(010.1320) Atmospheric and oceanic optics : Atmospheric transmittance

Original Manuscript: April 16, 2003
Revised Manuscript: September 10, 2003
Published: May 20, 2004

Thomas J. Kleespies, Paul van Delst, Larry M. McMillin, and John Derber, "Atmospheric transmittance of an absorbing gas. 6. OPTRAN status report and introduction to the NESDIS/NCEP community radiative transfer model," Appl. Opt. 43, 3103-3109 (2004)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. L. M. McMillin, L. J. Crone, T. J. Kleespies, “Atmospheric transmittance of an absorbing gas. 5. Improvements to the OPTRAN approach,” Appl. Opt. 34, 8396–8399 (1995). [CrossRef] [PubMed]
  2. L. M. McMillin, L. J. Crone, M. D. Goldberg, T. J. Kleespies, “Atmospheric transmittance of an absorbing gas. 4. OPTRAN: a computationally fast and accurate transmittance model for absorbing gases with fixed and with variable missing ratios at variable viewing angles,” Appl. Opt. 34, 6260–6274 (1995). [CrossRef]
  3. J. R. Eyre, “A fast radiative transfer model for satellite sounding systems,” ECMWF Research Dept. Tech. Memo.176 (1991) (28 pp.; available from The Director, ECMWF, Shinfield Park, Reading, RG29AX, UK).
  4. R. W. Saunders, M. Matricardi, P. Brunel, “An improved fast radiative transfer model for assimilation of satellite radiance observations,” Q. J. R. Meteorol. Soc. 125, 1407–1425 (1999).
  5. M. Matricardi, R. W. Saunders, “Fast radiative transfer model for simulation of infrared atmospheric sounding interferometer radiances,” Appl. Opt. 38, 5679–5691 (1999). [CrossRef]
  6. L. Garand, D. S. Turner, M. Larocque, J. Bates, S. Boukabara, P. Brunel, F. Chevallier, G. Deblonde, R. Engelen, M. Hollingshead, D. Jackson, G. Jedlovec, J. Joiner, T. Kleespies, D. S. McKague, L. McMillin, J.-L. Moncet, J. R. Pardo, P. Rayer, E. Salathe, R. Saunders, N. A. Scott, P. Van Delst, H. Woolf, “Radiance and Jacobian intercomparison of radiative transfer models applied to HIRS and AMSU channels,” J. Geophys. Res. 106, 24017–24031 (2001). [CrossRef]
  7. X. Xiong, L. M. McMillin, T. J. Kleespies are preparing a manuscript titled “Atmospheric transmittance of an absorbing gas. 7. Further improvements to the OPTRAN approach.”
  8. S. A. Clough, M. J. Iacono, J. L. Moncet, “Line-by-line calculations of atmospheric fluxes and cooling rates: application to water vapor,” J. Geophys. Res. 97, 15761–15785 (1992). [CrossRef]
  9. H. J. Liebe, “An updated model for millimeter wave propagation in moist air,” Radio Sci. 20, 1069–1089 (1985). [CrossRef]
  10. P. W. Rosenkranz, “Shape of the 5 mm oxygen band in the atmosphere,” IEEE Trans. Antennas Propag. AP-23, 498–506 (1975). [CrossRef]
  11. H. Woolf, University of Wisconsin-Madison, Madison, Wis. (personal communication, 2001).
  12. M. P. Weinreb, H. E. Fleming, L. M. McMillin, A. C. Neuendorffer, “Transmittances for the TIROS Operational Vertical Sounder,” Department of Commerce, National Oceanic and Atmospheric Administration, NOAA Tech. Rep. NESS 85, available from the Director of Office of Research and Applications, NOAA/NESDIS, 5200 Auth Road, Camp Springs, Md. 20746.
  13. T. J. Greenwald, R. Hertenstein, T. Vukicevic, “An all-weather observational operator for radiance data assimilation with mesoscale forecast models,” Mon. Weather Rev. 130, 1882–1897 (2002). [CrossRef]
  14. L. L. Strow, S. E. Hannon, S. De Souaz-Machado, H. E. Motteler, D. C. Tobin, “An overview of the AIRS radiative transfer model,” IEEE Trans. Geosci. Remote Sens. 41, 303–313 (2003). [CrossRef]
  15. R. M. Goody, Y. L. Yung, Atmospheric Radiation: Theoretical Basis, 2nd ed. (Oxford U. Press, New York, 1989), Sec. 6.1.2, p. 221.
  16. H. P. Gush, M. Halpern, E. H. Wishnow, “Rocket measurement of the cosmic background radiation mm-wave spectrum,” Phys. Rev. Lett. 65, 537–540 (1990). [CrossRef] [PubMed]
  17. R. L. Kurucz, “Synthetic infrared spectra, in Infrared Solar Physics, D. M. Rabin, J. T. Jefferies, eds., Int. Astron. Union Symp.154, 523–531 (1992).
  18. A. P. McNally, J. C. Derber, W. Wu, B. B. Katz, “The use of TOVS level-1b radiances in the NCEP SSI analysis system,” Q. J. R. Meteorol. Soc. 126, 689–724 (2000). [CrossRef]
  19. R. Giering, T. Kaminski, “Recipes for adjoint code construction,” ACM Trans. Math. Software 24, 437–474 (1998). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited