OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Glenn D. Boreman
  • Vol. 44, Iss. 34 — Dec. 1, 2005
  • pp: 7333–7338

Characterization of AlF3 thin films at 193 nm by thermal evaporation

Cheng-Chung Lee, Ming-Chung Liu, Masaaki Kaneko, Kazuhide Nakahira, and Yuuichi Takano  »View Author Affiliations


Applied Optics, Vol. 44, Issue 34, pp. 7333-7338 (2005)
http://dx.doi.org/10.1364/AO.44.007333


View Full Text Article

Enhanced HTML    Acrobat PDF (785 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Aluminum fluoride (AlF3) was deposited by a resistive heating boat. To obtain a low optical loss and high laser-induced damage threshold (LIDT) at 193 nm, the films were investigated under different substrate temperatures, deposition rates, and annealing after coating. The optical property (the transmittance, refractive index, extinction coefficient, and optical loss) at 193 nm, microstructure (the cross-sectional morphology, surface roughness, and crystalline structure), mechanical property (stress), and LIDT of AlF3 thin films have been studied. AlF3 thin films deposited at a high substrate temperature and low deposition rate showed a lower optical loss. The highest LIDT occurred at the substrate temperature of 150 °C. The LIDT of the films prepared at a deposition rate of 2 Å/s was higher than that at other deposition rates. The annealing process did not influence the optical properties too much, but it did increase the LIDT and stress.

© 2005 Optical Society of America

OCIS Codes
(310.3840) Thin films : Materials and process characterization
(310.6860) Thin films : Thin films, optical properties
(310.6870) Thin films : Thin films, other properties

ToC Category:
Thin Films

History
Original Manuscript: January 20, 2005
Revised Manuscript: May 31, 2005
Manuscript Accepted: June 2, 2005
Published: December 1, 2005

Citation
Cheng-Chung Lee, Ming-Chung Liu, Masaaki Kaneko, Kazuhide Nakahira, and Yuuichi Takano, "Characterization of AlF3 thin films at 193 nm by thermal evaporation," Appl. Opt. 44, 7333-7338 (2005)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-44-34-7333

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

If you are accessing the full text through a member bundle, please use the Enhanced HTML link to gain access to the citation lists and other restricted features. Note that accessing both the PDF and HTML versions of an article will count as only one download against your account.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

If you are accessing the full text through a member bundle, please use the Enhanced HTML link to gain access to the citation lists and other restricted features. Note that accessing both the PDF and HTML versions of an article will count as only one download against your account.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

If you wish to use one of your free member downloads to view the figures, click "Enhanced HTML" above and access the figures from the article itself or from the navigation tab.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

If you are accessing the full text through a member bundle, please use the Enhanced HTML link to gain access to the citation lists and other restricted features. Note that accessing both the PDF and HTML versions of an article will count as only one download against your account.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited