OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 10, Iss. 1 — Jan. 1, 1971
  • pp: 154–160

Photoluminescent Conversion of Laser Light for Black and White and Multicolor Displays. 2: Systems

D. A. Pinnow, L. G. Van Uitert, and M. Feldman  »View Author Affiliations


Applied Optics, Vol. 10, Issue 1, pp. 154-160 (1971)
http://dx.doi.org/10.1364/AO.10.000154


View Full Text Article

Enhanced HTML    Acrobat PDF (1386 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Recent technological developments permit the modulation and scanning of laser beams at rates comparable with those of electron beams in television receivers. This accounts for much of the current interest in laser illuminated display systems which are not constrained in size, as is the cathode ray tube, by the necessity of a vacuum enclosure. The purpose of the present work is to show how photoluminescent materials can be used in conjunction with recently developed acoustooptic deflectors and modulators to achieve high quality laser display systems. The principal function of the photoluminescent materials is that of color conversion when cated onto a viewing screen. This allows an additional degree of freedom in laser display engineering by removing the spectral constraints imposed by the limited number of practical laser emissions. Various schemes for both black and white and multicolor displays are explored. Some of the concepts which evolved have been experimentally verified by the operation of a system which projected the video signal from a PICTUREPHONE set. The source was an argon ion laser which emitted a monochromatic blue (4880-Å) beam. After acoustooptic modulation and deflection, the blue beam was directed to a phosphor screen where it was converted into a brighter and speckle-free black and white display.

© 1971 Optical Society of America

History
Original Manuscript: March 16, 1970
Published: January 1, 1971

Citation
D. A. Pinnow, L. G. Van Uitert, and M. Feldman, "Photoluminescent Conversion of Laser Light for Black and White and Multicolor Displays. 2: Systems," Appl. Opt. 10, 154-160 (1971)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-10-1-154


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. L. G. Van Uitert, D. A. Pinnow, J. C. Williams, Appl. Opt. 10, 150 (1971). [CrossRef] [PubMed]
  2. W. H. Watson, A. Korpel, “Equalization of Acoustooptic Deflection Cells in a Laser Color-TV Display,” IEEE Conference on Laser Engineering and Applications, Washington, D.C., May 1969;C. E. Baker, A. D. Rugari, Information Display 3, 37 (Mar./Apr. 1966); S. M. Stone, J. Schlafer, V. J. Fowler, Information Display 6, 41 (Jan./Feb. 1969).
  3. D. A. Pinnow, “A Solid State Acoustooptic Light Deflector,” IEEE Conference on Laser Engineering and Applications, Washington, D. C., May 1969.
  4. A. Korpel, R. Adler, P. Desmares, W. Watson, Proc. IEEE 54, 1429 (1966). [CrossRef]
  5. R. T. Denton, F. S. Chen, A. A. Ballman, J. Appl. Phys. 59, 1611 (1967). [CrossRef]
  6. R. T. Stevens, Sci. Technol. 44 (Nov.1968).
  7. C. E. Baker, IEEE Spectrum 5, 39 (Dec.1968). [CrossRef]
  8. E. F. Labuda, E. I. Gordon, R. C. Miller, IEEE J. Quantum Electron. QE-1, 273 (1965). [CrossRef]
  9. H. Boersch, G. Herziger, W. Seelig, J. Volland, Phys. Lett. 24A, 695 (1967).
  10. A. L. Bloom, Proc. IEEE 54, 1262 (1966). A typical argon ion laser that is commercially available requires 7000 W of electrical power and has a total optical output of 2 W. [CrossRef]
  11. I. Liberman, D. A. Larson, C. H. Church, IEEE J. Quantum Electron. QE-5, 238 (1969). [CrossRef]
  12. R. B. Allen, S. J. Scalise, Appl. Phys. Lett. 14, 188 (1969). [CrossRef]
  13. P. W. Smith, IEEE J. Quantum Electron. QE-2 (1966); A. L. Bloom, Proc. IEEE 54, 1262 (1966). [CrossRef]
  14. A. typical krypton ion laser that is commercially available requires 7000 W of electrical power and has a 150-mW output at 6471 Å.
  15. L. H. Enloe, Bell System Tech. J. 46, 1479 (1967).
  16. W. T. Silfvast, Appl. Phys. Lett. 13, 169 (1968). [CrossRef]
  17. S. A. Ahmed, W. Keeffe, “High Power Tricolor Mixed Gas Ion Laser,” and S. A. Ahmed, A. J. Campillo, “He–Ne–Cd Laser with Two Color Output,” International Electron Device Meeting, Washington, D.C., October 1969.
  18. K. McIlwain, C. E. Dean, Eds., Principles of Color Television (Wiley, New York, 1966), pp. 81–83.
  19. W. J. Smith, Modern Optical Engineering (McGraw-Hill, New York, 1966), pp. 113–121.
  20. W. J. Smith, Modern Optical Engineering (McGraw-Hill, New York, 1966), pp. 107–111.
  21. E. I. Gordon, Proc. IEEE 54, 1391 (1966). [CrossRef]
  22. R. Adler, IEEE Spectrum 4, 42 (May1967). [CrossRef]
  23. J. D. Gould, W. L. Makous, Information Display 5, 25 (1968).
  24. J. T. LaMacchia, BTL; private communication.
  25. G. W. Gray, Molecular Structure and the Properties of Liquid Crystals (Academic, New York, 1962), pp. 47–48; C. Robinson, “The Cholesteric Phase in Polypeptide Solutions and Biological Structures,” in Liquid Crystals (Proceedings of the International Conference on Liquid Crystals held at Kent State University, 16–20 August 1965). Coordinated by G. H. Brown, G. J. Doenes, M. M. Labes (Gordon and Breach, New York, 1966), pp. 147–174.
  26. H. W. Leidecker, private communication.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited