OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 10, Iss. 1 — Jan. 1, 1971
  • pp: 215–218

The Increase of Bragg Diffraction Intensity Due to Acoustic Resonance and Its Application for Demultiplexing and Multiplexing in Laser Communication

C. S. Tsai  »View Author Affiliations

Applied Optics, Vol. 10, Issue 1, pp. 215-218 (1971)

View Full Text Article

Enhanced HTML    Acrobat PDF (951 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools


No abstract available.

Original Manuscript: May 18, 1970
Published: January 1, 1971

C. S. Tsai, "The Increase of Bragg Diffraction Intensity Due to Acoustic Resonance and Its Application for Demultiplexing and Multiplexing in Laser Communication," Appl. Opt. 10, 215-218 (1971)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. (a)For references published in the journals in recent years, see for example: W. R. Klein, B. D. Cook, W. G. Mayer, Acoustica 15, No. 2, 67 (1965).(b)M. G. Cohen, E. I. Gordon, Bell System Tech. J. 44, 693 (1965).(c)H. V. Hance, J. K. Parks, J. Acoust. Soc. Amer. 38, 14 (1965).(d)C. F. Quate, C. D. W. Wilkinson, D. K. Winslow, Proc. IEEE 53, 1604 (1965).(e)E. I. Gordon, Proc. IEEE 54, 1391 (1966).(f)A. Korpel, R. Adler, P. Desmares, W. Watson, Proc. IEEE 54, 1429 (1966).(g)R. W. Dixon, IEEE J. Quant. Electron. QE-3, 85 (1967).(h)W. T. Maloney, H. R. Carleton, IEEE Trans. Sonics Ultrasonics SU-14, 135 (1967).(i)M. B. Schulz, M. G. Holland, L. Davis, Appl. Phys. Lett. 11, 237 (1967).(j)J. H. Collins, E. G. H. Lean, H. J. Shaw, Appl. Phys. Lett. 11, 240 (1967). [CrossRef]
  2. A. J. DeMaria, R. Gagosz, G. Bernard, J. Appl. Phys. 34, 453 (1963). [CrossRef]
  3. (a)L. E. Hargrove, R. L. Fork, M. A. Pollock, Appl. Phys. Lett. 5, 4 (1964).(b)M. DiDomenico, J. E. Geusic, H. M. Marcos, R. G. Smith, Appl. Phys. Lett. 8, 180 (1966). [CrossRef]
  4. C. S. Tsai, B. A. Auld, Proc. IEEE 54, 1217 (1966). [CrossRef]
  5. A calculation based on a simplified model and some experimental results can be found in C. S. Tsai, “Frequency conversion and amplification using Doppler-Shift methods in solids,” Ph.D. Thesis, M. L. Report 1395, Stanford University, Dec.1965.
  6. R. B. Lindsay, Mechanical Radiation (McGraw-Hill Book Company, New York, 1960).
  7. J. C. Slater, Microwave Electronics (D. Van Nostrand, New York, 1950).
  8. We shall employ the technique as is used in the Fabry-Perot laser cavity, Q = ωL/αec), where αe: power loss per pass, c:velocity of light, ω:resonant frequency, L:separation between the end mirrors. In our case αe consists of the medium loss α and the loss due to transmission at both end faces: we have exp-2αR1R2=exp-2αe∴αe=α+ln{1/[(R1R2)12]}.
  9. D. A. Pinnow, R. W. Dixon, Appl. Phys. Lett. 13, 156 (1968). [CrossRef]
  10. D. A. Pinnow, L. G. Van Uitert, A. W. Warner, W. A. Bonne, Appl. Phys. Lett. 15, 83 (1969). [CrossRef]
  11. G. A. Coquin, J. P. Griffin, L. K. Anderson, IEEE Trans. sonics SU-17, 34 (1970). [CrossRef]
  12. R. T. Denton, T. S. Kinsel, Proc. IEEE 56, 140 (1968); T. S. Kinsel, R. T. Denton, Proc. IEEE 56, 146 (1968). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited