OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 11, Iss. 9 — Sep. 1, 1972
  • pp: 1952–1959

Evanescent-Wave Interactions in an Optical Wave-Guiding Structure

K. O. Hill, A. Watanabe, and J. G. Chambers  »View Author Affiliations

Applied Optics, Vol. 11, Issue 9, pp. 1952-1959 (1972)

View Full Text Article

Enhanced HTML    Acrobat PDF (935 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Several types of waveguiding structures are known that can support the propagation of a finite number of bound electromagnetic modes. Two such structures are the dielectric slab and the optical fiber. In both structures the electromagnetic field associated with the bound modes extends beyond the central region; that part of the field that penetrates into the surrounding medium is termed evanescent. In this paper we use first-order perturbation theory to treat the effects caused by a surrounding medium with gain on the bound modes of the dielectric slab. A noteworthy effect is the amplification of these bound modes in accordance with formulas we present and which arises by evanescent-wave interaction with the surrounding medium.

© 1972 Optical Society of America

Original Manuscript: December 21, 1971
Published: September 1, 1972

K. O. Hill, A. Watanabe, and J. G. Chambers, "Evanescent-Wave Interactions in an Optical Wave-Guiding Structure," Appl. Opt. 11, 1952-1959 (1972)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. See, for example, R. E. Collins, Field Theory of Guided Waves (McGraw-Hill, New York, 1960).
  2. R. A. Kaplan, Proc. IEEE 51, 1144 (1963). [CrossRef]
  3. R. P. Flam, E. R. Schineller, Proc. IEEE 56, 195 (1968). [CrossRef]
  4. R. Shubert, J. H. Harris, IEEE Trans. MTT-16, 1048 (1968).
  5. E. R. Schineller, R. P. Flam, Donald W. Wilmot, J. Opt. Soc. Am. 58, 1171 (1968). [CrossRef]
  6. S. E. Miller, Bell Syst. Tech. J. 48, 2059 (1969).
  7. P. K. Tien, R. Ulrich, R. J. Martin, Appl. Phys. Lett. 14, 291 (1969). [CrossRef]
  8. M. L. Dakss, L. Kuhn, P. F. Heidrich, B. A. Scott, Appl. Phys. Lett. 16, 523 (1970). [CrossRef]
  9. J. E. Goell, R. D. Standley, Proc. IEEE 58, 1504 (1970). [CrossRef]
  10. P. K. Tien, Appl. Opt. 10, 2395 (1971). [CrossRef] [PubMed]
  11. C. J. Koester, IEEE J. Quantum Electron. QE-2, 580 (1966). [CrossRef]
  12. M. Born, E. Wolf, Principles of Optics (Pergamon Press, London, 1964), p. 10.
  13. The structure of Eq. (4) can be transformed into exactly that of the one-dimensional Schrödinger equation by allowing kx2 = ∊0μω2 − kz2. Equation (4) then becomes ∂2Ey/∂z2 + {kz2 − [∊0 − ∊(z)]μω2}Ey = 0, which is recognizable as being in the exact form of the one-dimensional Schrödinger equation.
  14. See, for example, J. A. Stratton, Electromagnetic Theory (McGraw-Hill, New York, 1941).
  15. E. P. Ippen, C. V. Shank, A. Dienes, IEEE J. Quantum Electron. QE-7, 178 (1971). [CrossRef]
  16. J. E. Midwinter, IEEE J. Quantum Electron. QE-7, 339 (1971). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited