OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 12, Iss. 10 — Oct. 1, 1973
  • pp: 2353–2366

Three-Dimensional Diffraction Calculations of Laser Resonator Modes

Arthur N. Chester  »View Author Affiliations


Applied Optics, Vol. 12, Issue 10, pp. 2353-2366 (1973)
http://dx.doi.org/10.1364/AO.12.002353


View Full Text Article

Enhanced HTML    Acrobat PDF (1371 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The numerical technique of Fox and Li for computing laser resonator modes is applied to the case of three-dimensional laser resonators without circular or rectangular symmetries. The computation techniques are explained, and results are presented for several specific resonators, both stable and unstable. The effect of laser medium shock waves on the refractive index of the optical cavity is approximated by a thin sheet near one resonator mirror. The near-field burn pattern of the laser output beam exactly follows the phase pattern of the shock fronts, in good qualitative agreement with experimental results reported for gas dynamic lasers. The far-field output beam demonstrates pronounced astigmatism, being considerably broadened at right angles to the flow direction, and it suggests a breakup of the far-field pattern into several separate intensity spots. The optical phase of the resonator mode is quite smooth, even in the worst cases studied, suggesting the possibility of phase compensation by suitable optics.

© 1973 Optical Society of America

History
Original Manuscript: March 2, 1973
Published: October 1, 1973

Citation
Arthur N. Chester, "Three-Dimensional Diffraction Calculations of Laser Resonator Modes," Appl. Opt. 12, 2353-2366 (1973)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-12-10-2353


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. For example, see Refs. 2 through 5 and articles cited therein.
  2. H. Kogelnik, T. Li, Appl. Opt. 5, 1550 (1966). [CrossRef] [PubMed]
  3. A. E. Siegman, H. Y. Miller, Appl. Opt. 9, 2729 (1970). [CrossRef] [PubMed]
  4. P. F. Checcacci, A. Consortini, A. Scheggi, IEEE Trans. Microwave Theory Tech. MTT-16, 103 (1968). [CrossRef]
  5. L. A. Weinstein, Open Resonators and Open Waveguides (The Golem Press, Boulder, Colorado, 1969).
  6. G. D. Boyd, H. Kogelnik, Bell Syst. Tech. J. 41, 1347 (1962).
  7. Leonard Bergstein, Appl Opt. 7, 495 (1968). [CrossRef] [PubMed]
  8. Yu. A. Kalinin, A. A. Mak, A. I. Stepanov, A. V. Folomeev, V. A. Fromzel’, Sov. Phys.-JETP 29, 624 (1969).
  9. H. Zucker, Bell Syst. Tech. J. 49, 2349 (1970).
  10. Yu. A. Anan’ev, V. E. Sherstobitov, Sov. J. Quantum Electron. 1, 263 (1971). [CrossRef]
  11. A. N. Chester, Appl. Opt. 11, 2584 (1972). [CrossRef] [PubMed]
  12. A. G. Fox, T. Li, Bell Syst. Tech. J. 40, 453 (1961).
  13. T. Li, Bell Syst. Tech. J. 44, 917 (1965).
  14. Walter K. Kahn, Appl. Opt. 5, 407 (1966). [CrossRef] [PubMed]
  15. S. R. Barone, Appl. Opt. 6, 861 (1967). [CrossRef] [PubMed]
  16. Anthony E. Siegman, Raymond Arrathoon, IEEE J. Quantum Electron. QE-3, 156 (1967). [CrossRef]
  17. William Streifer, IEEE J. Quantum Electron. QE-4, 229 (1968). [CrossRef]
  18. Robert L. Sanderson, William Streifer, Appl. Opt. 8, 131 (1969). [CrossRef] [PubMed]
  19. R. L. Sanderson, William Streifer, Appl. Opt. 8, 2129 (1969). [CrossRef] [PubMed]
  20. Robert L. Sanderson, William Streifer, Appl. Opt. 8, 2241 (1969). [CrossRef] [PubMed]
  21. A. N. Chester, IEEE J. Quantum Electron. QE-9, 209 (1973). [CrossRef]
  22. In particular, unstable resonators can be so sensitive to mirror misalignment or aberration that a perturbation treatment may not converge rapidly enough to model many experimentally interesting cases.21
  23. Since the mirrors are curved, they cannot exactly lie in a plane of constant z. However, as long as the phase shifts introduced into the reflected beam are correctly included, this is not a source of significant error.
  24. See, for example, Eqs. (8.2.1) and (8.3.20) in M. Born, E. Wolf, Principles of Optics (Pergamon Press, New York, 1965).
  25. D. B. Rensch, A. N. Chester, to be published.
  26. M. A. Lintner, “PROJ—Algorithm and Computer Programs for the Hidden Line Problem for Single Valued Surfaces,” Idaho Nuclear Corporation, Idaho Falls, Idaho.
  27. P. O. Clark, “Design considerations for high power laser cavities,” AIAA Paper 72-708, AIAA 5th Fluid and Plasma Dynamics Conference, Boston, Massachusetts, 26–28 June 1972.
  28. E. V. Locke, R. Hella, L. Westra, G. Zeiders, IEEE J. Quantum Electron. QE-7, 581 (1971); erratum: IEEE J. Quantum Electron. QE-8, 389 (1972). [CrossRef]
  29. E. T. Gerry, IEEE Spectrum 7, 51 (1970). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited