Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Willstätter-Stoll Theory of Leaf Reflectance Evaluated by Ray Tracing

Not Accessible

Your library or personal account may give you access

Abstract

The widely accepted Willstätter-Stoll (W-S) theory of leaf reflectance has been investigated by extensive ray tracing through a model (W-S model) in which the leaf cellular structure is approximated by circular arcs. Calculations were performed on an IBM 1800 computer. The W-S model is treated as a two-dimensional, uncentered optical system consisting of a single medium and air. Optical properties of the medium are specified by a complex index of refraction. Given an incident ray, new reflected and transmitted rays are produced at each interface with properties determined by the laws of Snell, Fresnel, and Lambert. Calculations indicate that the W-S model, as exemplified by their artist’s conception, is too transparent, that is, the magnitude predicted for transmittance is too high. Transmittance is still too high if each interface is treated as a diffusive instead of a smooth surface. The W-S model can be easily improved, however, by introduction of more intercellular air spaces. The modified W-S model promises to be an excellent representation of physical reality. Accurate predictions, however, require an inordinate amount of computer time.

© 1973 Optical Society of America

Full Article  |  PDF Article
More Like This
Light Ray Tracing Through a Leaf Cross Section

R. Kumar and L. Silva
Appl. Opt. 12(12) 2950-2954 (1973)

Relation of Light Reflectance to Histological and Physical Evaluations of Cotton Leaf Maturity

H. W. Gausman, W. A. Allen, R. Cardenas, and A. J. Richardson
Appl. Opt. 9(3) 545-552 (1970)

Leaf optical system modeled as a stochastic process

Compton J. Tucker and Michael W. Garratt
Appl. Opt. 16(3) 635-642 (1977)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (30)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved