OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 13, Iss. 11 — Nov. 1, 1974
  • pp: 2562–2579

Removal of Pedestals and Directional Ambiguity of Optical Anemometer Signals

F. Durst and M. Zaré  »View Author Affiliations

Applied Optics, Vol. 13, Issue 11, pp. 2562-2579 (1974)

View Full Text Article

Enhanced HTML    Acrobat PDF (2070 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Laser Doppler anemometry permits, in principle, the measurement of both magnitude and direction of components of a particle’s velocity vector. Most exiting anemometers, however, permit measurements only with a directional ambiguity of 180°, resulting in errors in certain flow fields. Available methods of eliminating the directional ambiguity of Laser Doppler anemometers are reviewed, covering frequency shifting of the incident and scattered light beams, the use of beams with different polarization properties, and employment of multicolor laser beams. The advantages and disadvantages of existing methods are summarized, and suggestions for alterations are made. Different techniques used to remove the pedestal of laser Doppler anemometer signals are also reviewed. Optical techniques should be employed in any advanced optical anemometer system to avoid dynamic range limitations by electronic bandpass filters. Suggestions are made for advanced optical anemometers employing multielement avalanche photodiodes that can be used for simultaneous measurements of two velocity components. These anemometers incorporate devices to sense the direction of the velocity components and to eliminate optically the pedestal of laser Doppler signals.

© 1974 Optical Society of America

Original Manuscript: January 31, 1974
Published: November 1, 1974

F. Durst and M. Zaré, "Removal of Pedestals and Directional Ambiguity of Optical Anemometer Signals," Appl. Opt. 13, 2562-2579 (1974)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. F. Durst, J. H. Whitelaw, Proc. Roy. Soc. London A324, 157 (1971).
  2. F. Durst, J. H. Whitelaw, J. Phys. E. 4, 804 (1971). [CrossRef]
  3. R. J. Goldstein, D. K. Kreid, “Fluid Velocity Measurement from Doppler-Shift of Scattered Laser Radiation,” University of Minnesota, Institute of Technology, Department of Mechanical Engineering, HTL-TR-85 (1968).
  4. Y. Yeh, H. Z. Cummins, Appl. Phys. Lett. 4, 176 (1964). [CrossRef]
  5. E. B. Denison, W. H. Stevenson, Rev. Sci. Instrum. 41, 1475 (1970). [CrossRef]
  6. M. K. Mazumder, Appl. Phys. Lett. 10, 462 (1970). [CrossRef]
  7. W. H. Stevenson, Appl. Opt. 9, 649 (1970). [CrossRef] [PubMed]
  8. T. Suzuki, R. Hioko, J. Opt. Soc. Am. 57, 1551 (1967). [CrossRef]
  9. H. Cummins, N. Knable, G. Gampel, Y. Yeh, Appl. Phys. Lett. 2 (3), (1963).
  10. Zenith Technical Notes: “Acousto-Optic Application of Calibrators and Frequence Shifters for Laser Velocimeters” (1971).
  11. C. F. Buhrer, D. Baird, E. M. Cowell, Appl. Phys. Lett. 1, 46 (1962). [CrossRef]
  12. J. P. Campell, W. H. Steier, IEEE J. Quantum Electron. QE-7, 450 (1971). [CrossRef]
  13. L. E. Drain, B. C. Moss, Opto-Electron.429 (April1972). [CrossRef]
  14. J. Oldengarm, A. H. van Krieken, H. J. Raterink, Opt. Laser Technol. 249 (1973).
  15. P. Debye, F. W. Sears, Proc. Nat. Acad. Sci. U.S. 18, 409 (1932). [CrossRef]
  16. R. Lucas, P. Biquard, J. Phys. Rad. 3, 464 (1932). [CrossRef]
  17. C. V. Raman, N. S. Nath, Proc. Indian Acad. Sci. A2, 406 (1935).
  18. G. W. Willard, J. Accoust. Soc. Am. 21, 101 (1949). [CrossRef]
  19. F. L. Crosswy, J. O. Hornkohl, A. E. Lennert, “Signal Characteristics and Signal Conditioning Electronics for a Vector Velocity Laser Velocimeter,” Project Squid NOOO 14-67-0226-0005, P 396 (School of Mechanical Engineering, Purdue University, Lafayette, Indiana, March1972).
  20. Precision Devices and Systems (UK): “Laser Anemometer Phase Modulator” (1974).
  21. W. H. Goethert, “Balanced Detection for the Dual Scatter Laser Doppler Velocimeter,” Arnold Engineering Development Center, Air Force Systems Command, AE DC-TR-71-70, Arnold Air Force Station, Tennessee (1971).
  22. P. D. Iten, R. Dändliker, Appl. Opt. 13, 286 (1974). [CrossRef] [PubMed]
  23. L. D. Ballard, W. S. Epstein, E. R. Smith, S. Edelman, J. Res. Nat. Bur. Stand. (U.S.) C. 73C, 3/4, July/September (1969).
  24. L. E. Drain: “Scheme for Sign Determination in Laser-Doppler Velocity or Displacement Measurements,” Materials Physics Division, A.E.R.E., Harwell (1969).
  25. M. Born, E. Wolf, Principles of Optics (Pergamon, London, 1970).
  26. H. J. Pfeifer, H. D. vom Stein, “Ein Verfahren zur Bestimung des Vorzeichens der Geschwindigkeit bei der Doppler-Differenzmethode,” Deutsch-Französisches Forschungsinstitut N17/71, Saint-Louis (1971).
  27. A. Müller, “Measurement of the Sign of a Velocity Component from the Phase Difference of the Two Heterodyne Signals,” EUROMECH-36, London (1972).
  28. Thermo Systems Incorporated, “Model 1094, LDV Signal Processor Counter Type” (1973).
  29. W. J. Hiller, G. E. A. Meier, “Zur Vorzeichenbestimmung der Geschwindigkeitskomponenten beim Laser-Doppler-Anemometer,” Max-Planck-Institut für Strömungsforschung, Göttingen (October1972).
  30. D. B. Brayton, H. T. Kalb, F. L. Crosswy, “A Two-Component, Dual-Scatter Laser Doppler Velocimeter with Frequency Burst Signal Readout,” Project Squid NOOO 14-67-0226-0005, P52 (School of Mechanical Engineering, Purdue University, Lafayette, Indiana, March1972).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited