OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 13, Iss. 11 — Nov. 1, 1974
  • pp: 2614–2619

Normal-Mode Approach to Wave Propagation in the Turbulent Atmosphere

Jeffrey H. Shapiro  »View Author Affiliations

Applied Optics, Vol. 13, Issue 11, pp. 2614-2619 (1974)

View Full Text Article

Enhanced HTML    Acrobat PDF (647 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Recent studies have used the superposition principle (extended Huygens-Fresnel principle) to characterize completely the statistics of a field that has propagated through a thick slab of turbulent air in terms of the statistics for spherical-wave sources. In this paper, we consider the normal-mode decomposition associated with this linear system propagation model. In particular, we use the statistics of the atmospheric impulse response (Green’s function) to show that the atmospheric mode decomposition exhibits far-field and near-field regimes very similar to those of free-space propagation. The significance of these results for optical communication through the atmosphere is briefly discussed.

© 1974 Optical Society of America

Original Manuscript: February 4, 1974
Published: November 1, 1974

Jeffrey H. Shapiro, "Normal-Mode Approach to Wave Propagation in the Turbulent Atmosphere," Appl. Opt. 13, 2614-2619 (1974)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. V. I. Tatarski, Wave Propagation in a Turbulent Medium (McGraw-Hill, New York, 1961).
  2. R. S. Lawrence, J. W. Strohbehn, Proc. IEEE 58, 1523 (1970). [CrossRef]
  3. E. Brookner, IEEE Trans. COM-18, 396 (1970). [CrossRef]
  4. J. W. Strohbehn, in Progress in Optics, E. Wolf, Ed. (North-Holland, Amsterdam, 1971), Vol 9. [CrossRef]
  5. R. F. Lutomirski, H. T. Yura, Appl. Opt. 10, 1652 (1971). [CrossRef] [PubMed]
  6. H. T. Yura, Appl. Opt. 11, 1399 (1972). [CrossRef] [PubMed]
  7. H. T. Yura, J. Opt. Soc. Am. 62, 889 (1972). [CrossRef]
  8. H. S. Lin, “Communication Model for the Turbulent Atmosphere,” Ph.D. thesis, Case Western Reserve U., 1973.
  9. D. Slepian, J. Opt. Soc. Am. 55, 1110 (1965). [CrossRef]
  10. G. V. Borgiotti, IEEE Trans. Antennas Prop. AP-14, 158 (1966). [CrossRef]
  11. C. K. Rushforth, R. W. Harris, J. Opt. Soc. Am. 58, 539 (1968). [CrossRef]
  12. G. Toraldo di Francia, J. Opt. Soc. Am. 59, 799 (1969). [CrossRef] [PubMed]
  13. J. H. Shapiro, IEEE Trans. COM-19, 410 (1971). [CrossRef]
  14. J. H. Shapiro, J. Opt. Soc. Am. 61, 492 (1971). [CrossRef]
  15. J. H. Shapiro, Appl. Opt. 13, 2709 (1974).
  16. D. Slepian, Bell Syst. Tech. J. 43, 3009 (1964).
  17. J. B. Thomas, An Introduction to Applied Probability and Random Processes (Wiley, New York, 1971), p. 107.
  18. In the ensuing discussion, we shall assume that the aperture diameters are not equal and that the smaller diameter is less than the phase-coherence length.
  19. E. V. Hoversten, R. O. Harger, S. J. Halme, Proc. IEEE 58, 1626 (1970). [CrossRef]
  20. M. C. Teich, S. Rosenberg, Appl. Opt. 12, 2616 (1973). [CrossRef] [PubMed]
  21. S. Rosenberg, M. C. Teich, Appl. Opt. 12, 2625 (1973). [CrossRef] [PubMed]
  22. D. L. Fried, H. T. Yura, J. Opt. Soc. Am. 62, 600 (1972). [CrossRef]
  23. G. Q. McDowell, “Pre-Distortion of Local Oscillator Wavefront for Improved Optical Heterodyne Detection Through a Turbulent Atmosphere,” Sc.D. thesis, MIT, 1971.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited