OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 13, Iss. 12 — Dec. 1, 1974
  • pp: 2775–2792

Mode Calculations in Unstable Resonators with Flowing Saturable Gain. 1:Hermite-Gaussian Expansion

A. E. Siegman and Edward A. Sziklas  »View Author Affiliations


Applied Optics, Vol. 13, Issue 12, pp. 2775-2792 (1974)
http://dx.doi.org/10.1364/AO.13.002775


View Full Text Article

Enhanced HTML    Acrobat PDF (2300 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a procedure for calculating the three-dimensional mode pattern, the output beam characteristics, and the power output of an oscillating high-power laser taking into account a nonuniform, transversely flowing, saturable gain medium; index inhomogeneities inside the laser resonator; and arbitrary mirror distortion and misalignment. The laser is divided into a number of axial segments. The saturated gain-and-index variation across each short segment is lumped into a complex gain profile across the midplane of that segment. The circulating optical wave within the resonator is propagated from midplane to midplane in free-space fashion and is multiplied by the lumped complex gain profile upon passing through each midplane. After each complete round trip of the optical wave inside the resonator, the saturated gain profiles are recalculated based upon the circulating fields in the cavity. The procedure when applied to typical unstable-resonator flowing-gain lasers shows convergence to a single distorted steady-state mode of oscillation. Typical near-field and far-field results are presented. Several empirical rules of thumb for finite truncated Hermite-Gaussian expansions, including an approximate sampling theorem, have been developed as part of the calculations.

© 1974 Optical Society of America

History
Original Manuscript: November 2, 1973
Published: December 1, 1974

Citation
A. E. Siegman and Edward A. Sziklas, "Mode Calculations in Unstable Resonators with Flowing Saturable Gain. 1:Hermite-Gaussian Expansion," Appl. Opt. 13, 2775-2792 (1974)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-13-12-2775

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

If you are accessing the full text through a member bundle, please use the Enhanced HTML link to gain access to the citation lists and other restricted features. Note that accessing both the PDF and HTML versions of an article will count as only one download against your account.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

If you are accessing the full text through a member bundle, please use the Enhanced HTML link to gain access to the citation lists and other restricted features. Note that accessing both the PDF and HTML versions of an article will count as only one download against your account.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

If you wish to use one of your free member downloads to view the figures, click "Enhanced HTML" above and access the figures from the article itself or from the navigation tab.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

If you are accessing the full text through a member bundle, please use the Enhanced HTML link to gain access to the citation lists and other restricted features. Note that accessing both the PDF and HTML versions of an article will count as only one download against your account.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited