OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 13, Iss. 9 — Sep. 1, 1974
  • pp: 2081–2094

High Power Nd:Glass Laser for Fusion Applications

J. Soures, S. Kumpan, and J. Hoose  »View Author Affiliations


Applied Optics, Vol. 13, Issue 9, pp. 2081-2094 (1974)
http://dx.doi.org/10.1364/AO.13.002081


View Full Text Article

Enhanced HTML    Acrobat PDF (2301 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Experiments on laser-induced thermonuclear fusion require high brightness lasers capable of producing subnanosecond pulses with total energy content of several kilojoules. Of existing laser media, Nd:glass appears to be the best choice for meeting these criteria. In this paper we discuss the problems of designing a high power Nd:glass laser system. A detailed description of an operating two-beam system producing subnanosecond pulses with a maximum energy of 350 J per beam is presented, along with an extensive description of beam diagnostic techniques. A four beam version of this system became operational on 3 April 1974 and is now producing energies in excess of a kilojoule in subnanosecond pulses.

© 1974 Optical Society of America

History
Original Manuscript: December 26, 1973
Published: September 1, 1974

Citation
J. Soures, S. Kumpan, and J. Hoose, "High Power Nd:Glass Laser for Fusion Applications," Appl. Opt. 13, 2081-2094 (1974)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-13-9-2081


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. Nuckolls, L. Wood, A. Thiessen, G. Zimmerman, Nature 239, 139 (1972). [CrossRef]
  2. M. Lubin, A. Fraas, Sci. Am. 224, No. 6, 23 (1971).
  3. R. E. Kidder. “Some Aspects of Controlled Fusion by Use of Lasers,” Proceedings Esfahan Symposium on Fundamental and Applied Laser Physics, M. S. Feld et al., Ed. (Wiley, New York, 1973).
  4. E. E. Stark, W. H. Reichelt, G. T. Schappert, T. F. Stratton, Appl. Phys. Lett. 23, 322 (1973). [CrossRef]
  5. K. Hohla, K. L. Kompa, Appl. Phys. Lett. 22, 77 (1973). [CrossRef]
  6. J. B. Gerardo, A. Wayne Johnson, IEEE J. Quantum Electron. QE-9, 748 (1973). [CrossRef]
  7. W. G. Wagner, H. A. Hauss, J. H. Marburger, Phys. Rev. 175, 256 (1968). [CrossRef]
  8. E. L. Dawes, J. H. Marburger, Phys. Rev. 179, 862 (1969). [CrossRef]
  9. B. R. Suydam, Los Alamos Sci. Lab. Report LA-5003-MS (1973).
  10. J. M. McMahon, in “Laser Induced Damage in Optical Materials: 1972,” National Bureau of Standards Special Publication 372 (1972) p. 100.
  11. E. S. Bliss, IEEE J. Quantum Electron. QE-8, 273 (1972). [CrossRef]
  12. B. R. Suydam, in “Laser Induced Damage in Optical Materials,” National Bureau of Standards Special Publication 387 (1973).
  13. M. A. Dúguay, J. W. Hansen, S. L. Shapiro, IEEE J. Quantum Electron. QE-6, 725 (1970). [CrossRef]
  14. N. G. Basov, O. N. Krokhin, G. V. Sklizkov, S. I. Fedotov, A. S. Shikanov, Sov. Phys. JETP 35, 109 (1973).
  15. K. Patek, Glass Lasers (London: Butterworth and Co., 1970).
  16. J. Soures, L. Goldman, M. Lubin, Appl. Opt. 12, 927 (1973). [CrossRef] [PubMed]
  17. K. Tomiyasu, Proc. IRE 50, 2488 (1962).
  18. J. MeMetz, Appl. Opt. 10, 1609 (1971). [CrossRef]
  19. S. W. Mead, R. E. Kidder, J. E. Swain, F. Rainer, J. Petruzzi, Appl. Opt. 11, 345 (1972). [CrossRef] [PubMed]
  20. J. M. McMahon, J. L. Emmett, J. F. Holzrichter, J. B. Trenholme, J. Quantum Electron. QE-9, 992 (1973). [CrossRef]
  21. M. J. Lubin, J. M. Soures, L. M. Goldman, J. Appl. Phys. 44, 347 (1973). [CrossRef]
  22. C. R. Jones, P. V. Avizonis, P. Sivgals, in “Damage in Laser Materials,” National Bureau of Standards Special Publication 341 (1970) p. 28.
  23. H. Welling, C. Bickart, J. Opt. Soc. Am. 56, 611 (1966). [CrossRef]
  24. G. D. Baldwin, E. P. Riedel, J. Appl. Phys. 38, 2726 (1967). [CrossRef]
  25. H. Kogelnik, Bell Syst. Tech. J. 43, 455 (1965).
  26. Jürg Steffen, Jean-Pierre Lörtsheer, G. Herziger, IEEE J. Quantum Electron. QE-8, 239 (1972). [CrossRef]
  27. E. Snitzer, Appl. Opt. 5, 121 (1966). [CrossRef] [PubMed]
  28. G. Dubé, Appl. Phys. Lett. 18, 69 (1971). [CrossRef]
  29. A. J. DeMaria, W. H. Glenn, M. J. Brienzae, M. E. Mack, Pros. IEEE 57, 2 (1969). [CrossRef]
  30. This is a camera manufactured by Electro-Photonics Ltd. of Dunmurry, N. Ireland.
  31. P. G. Kryukov, V. S. Letokhov, IEEE J. Quantum Electron. QE-8, 766 (1972). [CrossRef]
  32. D. von der Linde, K. F. Rodgers, IEEE J. Quan. Electron. QE-9, 960 (1973). [CrossRef]
  33. D. K. Duston, K. Rose, IEEE J. Quntum Electron. QE-6, 3 (1970).
  34. P. C. Magnante, IEEE J. Quantum Electron. QE-8, 440 (1972). [CrossRef]
  35. A. Penzkofer, W. Kaiser, Appl. Phys. Lett. 21, 427 (1972). [CrossRef]
  36. M. V. R. K. Murty, Appl. Opt. 3, 531 (1964). [CrossRef]
  37. J. Soures, L. Goldman, M. Lubin, Nuclear Fusion 13, No. 6 (1973). [CrossRef]
  38. L. M. Goldman, J. Soures, M. Lubin, Phys. Rev. Lett. 31, 1184 (1973). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited