OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 13, Iss. 9 — Sep. 1, 1974
  • pp: 2164–2170

Effect of Electron Deexcitation and Self-Absorption on the Intensity of the Hg 2537-Å Radiation from Hg + Ar Discharges (ac Fluorescent Lamps)

T. J. Hammond and C. F. Gallo  »View Author Affiliations


Applied Optics, Vol. 13, Issue 9, pp. 2164-2170 (1974)
http://dx.doi.org/10.1364/AO.13.002164


View Full Text Article

Enhanced HTML    Acrobat PDF (886 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The intensity of the Hg 2573-Å radiation from Hg + Ar discharges was measured as an independent function of mercury pressure (0.2–50 mTorr), ac current (50–2100 mA) and tube radius (0.79 cm and 1.27 cm) at a constant Ar pressure of ~4 Torr. For various constant mercury pressures, the Hg 2537-Å intensity initially rises linearly with increasing current, but then tends to bend over and approach an asymptotic limit. The nonlinear, asymptotic behavior is due to electron deexcitation of the Hg 63P1 state at the higher currents in the presence of Hg 2537-Å self-absorption. The Hg 2537-Å intensity was also measured as a function of mercury pressure at various constant currents. The intensity rises to a peak (which defines an optimum Hg pressure) and then decreases with further increase in mercury pressure due to the combination of self-absorption and electron deexcitation. For high ac currents, the optimum Hg pressure is independent of current but varies inversely with the tube diameter. All this behavior is relevant to the problem of obtaining high efficiency from fluorescent lamps at high powers.

© 1974 Optical Society of America

History
Original Manuscript: March 5, 1974
Published: September 1, 1974

Citation
T. J. Hammond and C. F. Gallo, "Effect of Electron Deexcitation and Self-Absorption on the Intensity of the Hg 2537-Å Radiation from Hg + Ar Discharges (ac Fluorescent Lamps)," Appl. Opt. 13, 2164-2170 (1974)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-13-9-2164


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. F. Waymouth, Electric Discharge Lamps (MIT Press, Cambridge, Mass., 1971), Chapters 2 and 5.
  2. Illuminating Engineering Society, IES Lighting Handbook (Illuminating Engineering Society, New York, 1962).
  3. W. Elenbaas, Fluorescent Lamps (Macmillan, London, 1971).
  4. E. F. Lowry, Illum. Eng. 43, 141 (1948). [PubMed]
  5. Ref. 1, pp. 17, 34–36.
  6. Ref. 1, pp. 14, 17.
  7. Ref. 1, Chap. 3.
  8. Ref. 1, pp. 63–67.
  9. Ref. 1, Chap. 4.
  10. Ref. 2, p. 8–54.
  11. E. F. Lowry, W. S. Frohock, G. A. Meyers, Illum. Eng. 41, 859 (1946).
  12. Ref. 1, pp. 24, 139–141.
  13. Ref. 3, p. 26.
  14. C. Jerome, Illum. Eng. 51, 205 (1956).
  15. H. W. Melville, Trans. Faraday Soc. 32, 1525 (1936). [CrossRef]
  16. B. T. Barnes, J. Appl. Phys. 31, 852 (1960). [CrossRef]
  17. M. Koedam, A. A. Kruithof, Physica 28, 80 (1962). [CrossRef]
  18. M. Koedam, A. A. Kruithof, J. Riemens, Physica 29, 565 (1963). [CrossRef]
  19. P. J. Underwood, C. E. Beck, Illum. Eng. 55, 47 (1960).
  20. J. W. Marden, N. C. Beese, G. Meister, Trans. Illum. Eng. Soc. 34, 55 (1939).
  21. T. B. Read, Brit. J. Appl. Phys. 15, 837 (1964). [CrossRef]
  22. W. C. Gungle, J. F. Waymouth, H. H. Homer, Illum. Eng. 52, 262 (1957).
  23. P. D. Johnson, J. Opt. Soc. Am. 61, 1451 (1971). [CrossRef]
  24. J. C. Forbes, R. J. Diefenthaler, Illum. Eng. 41, 872 (1946). [PubMed]
  25. R. N. Thayer, B. T. Barnes, J. Opt. Soc. Am. 29, 131 (1939). [CrossRef]
  26. J. W. Marden, N. C. Beese, G. Meister, J. Opt. Soc. Am. 30, 184 (1940). [CrossRef]
  27. C. Kenty, J. Appl. Phys. 21, 1309 (1950). [CrossRef]
  28. Ref. 1, pp. 24–26, 29–38.
  29. J. F. Waymouth, F. Bitter, J. Appl. Phys. 27, 122 (1956). [CrossRef]
  30. J. F. Waymouth, F. Bitter, E. F. Lowry, Illum. Eng. 52, 257 (1957).
  31. T. J. Hammond, C. F. Gallo, Appl. Opt. 10, 58 (1971). Notice in Fig. 4 that when the Hg vapor is controlled, the Hg 2537-Å intensity is prevented from decreasing at high powers, but it does tend to bend over and approach an asymptotic limit. [CrossRef] [PubMed]
  32. M. A. Cayless, Brit. J. Appl. Phys. 14, 863 (1963). [CrossRef]
  33. M. F. Hoyaux, E. G. Sucov, J. Appl. Phys. 40, 3237 (1969). [CrossRef]
  34. L. Vriens, J. Appl. Phys. 44, 3980 (1973). [CrossRef]
  35. J. Polman, J. E. Van der Werf, P. C. Drop, J. Phys. D 5, 266 (1972); and P. C. Drop, J. Polman, J. Phys. D 5, 562 (1972). [CrossRef]
  36. J. R. Forrest, R. N. Franklin, J. Phys. B, Series 2 2, 471 (1969). [CrossRef]
  37. J. R. Forrest, R. N. Franklin, Brit. J. Appl. Phys. (J. Phys. D) Series 2 1, 1357 (1968). [CrossRef]
  38. P. J. Walsh, G. W. Manning, D. A. Larson, J. Appl. Phys. 34, 2273 (1963). [CrossRef]
  39. W. Verweij, Philips Tech. Rev. 16, 1 (1961).
  40. F. A. Uvarov, V. A. Fabrikant, Opt. Spectrosc. 18, 323 (1965); Opt. Spectrosc. 18, 433 (1965); and Opt. Spectrosc. 18, 541 (1964); and Y. M. Kagan, B. Kasmaliev, Opt. Spectrosc. 24, 356 (1968); and Opt. Spectrosc. 22, 293 (1967).
  41. Ref. 31. This previous study was done with dc and the anode end was cooled. It is important to realize that there are cataphoretic phenomena involved as a complication to the data, and in addition the detailed behavior is dependent on whether the cathode or anode is cooled. This will be discussed in more detail at a later date. See also T. J. Hammond, C. F. Gallo, Appl. Opt. 11, 729 (1972). [CrossRef] [PubMed]
  42. A. N. Nesmeyanov, Vapour Pressure of the Elements (Academic Press, New York, 1963).
  43. Refs. 15, 17, 18, 23, 31 and Ref. 1, p. 25.
  44. Refs. 14, 19, and 21.
  45. E. Skurnick, H. Schacter, J. Appl. Phys. 43, 3393 (1972). Analogous to our situation, these authors have ascribed the quenching limitation in argon–ion lasers at high currents as due to electron deexcitation in the presence of self-absorption. [CrossRef]
  46. C. F. Gallo, Appl. Opt. 5, 1285 (1966); Phys. Rev. 158, 1 (1967); Appl. Opt. 9, 2711 (1970); and T. J. Hammond, C. F. Gallo, Appl. Opt. 10, 58 (1971). [CrossRef] [PubMed]
  47. T. Holstein, Phys. Rev. 72, 1212 (1947); and Phys. Rev. 83, 1159 (1951). [CrossRef]
  48. J. H. Ingold, J. Appl. Phys. 41, 94 (1970). [CrossRef]
  49. P. J. Walsh, Phys. Rev. 116, 511 (1959). [CrossRef]
  50. P. J. Walsh, Phys. Rev. 107, 338 (1957). [CrossRef]
  51. M. A. Weinstein, J. Appl. Phys. 33, 587 (1962); and J. Appl. Phys. 41, 480 (1970). [CrossRef]
  52. Several authors (Refs. 12–26) have shown that the optimum mercury pressure corresponds to a cold spot temperature around 40°C, which is in agreement with our results.
  53. P. D. Johnson, Appl. Phys. Lett. 18, 381 (1971). [CrossRef]
  54. P. D. Johnson, private communication.
  55. Ref. 50. See Appendix I and p. 339.
  56. Ref. 50, Eq. (2.1).
  57. T. J. Hammond, C. F. Gallo, Appl. Opt. 11, 729 (1972). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited