OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 13, Iss. 9 — Sep. 1, 1974
  • pp: 2171–2176

Estimation of Optical Field Mean Intensities from Photocount Correlations

F. Davidson and R. S. Iyer  »View Author Affiliations

Applied Optics, Vol. 13, Issue 9, pp. 2171-2176 (1974)

View Full Text Article

Enhanced HTML    Acrobat PDF (614 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



An extremely simple procedure is given for estimating the mean intensity of each component of a two-component optical field from measurements of the number of photocounts recorded over counting intervals of T sec duration spaced τ sec apart. The only a priori knowledge required about each component is the functional form of the first- and second-order coherence functions and an order of magnitude estimate of their coherence times.

© 1974 Optical Society of America

Original Manuscript: January 7, 1974
Published: September 1, 1974

F. Davidson and R. S. Iyer, "Estimation of Optical Field Mean Intensities from Photocount Correlations," Appl. Opt. 13, 2171-2176 (1974)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. L. Mandel, Proc. Phys. Soc. 72, 1037 (1958). [CrossRef]
  2. B. Reiffen, H. Sherman, Proc. IEEE 51, 1316 (1963). [CrossRef]
  3. C. W. Helstrom, J. W. S. Liu, J. P. Gordon, Proc. IEEE 58, 1578 (1970). [CrossRef]
  4. D. L. Snyder, IEEE Trans. Inform. Theory IT-18, 91 (1972). [CrossRef]
  5. R. J. Glauber, Phys. Rev. 131, 2766 (1963). [CrossRef]
  6. M. Born, E. Wolf, Principles of Optics (Pergamon Press, London, 1964), pp. 491–556.
  7. H. L. van Trees, Detection, Estimation, and Modulation Theory, Part I (Wiley, New York, 1968), pp. 52–74.
  8. S. Karp, J. R. Clark, IEEE Trans. Inform. Theory IT-16672 (1970). [CrossRef]
  9. P. Diament, M. C. Teich, J. Opt. Soc. Am. 60, 682 (1970). [CrossRef]
  10. E. Jakeman, J. Phys. A: Gen. Phys. 3, 201 (1970). [CrossRef]
  11. H. L. van Trees, Ref. 7, p. 178. The difficulty in evaluating the expectations in Eqs. (1) and (2) lies in the inability to determine the statistics of the expansion coefficients for non-Gaussian processes.
  12. L. Mandel, Phys. Rev. 136, B1221 (1964). [CrossRef]
  13. L. Mandel, Phys. Rev. 138, B753 (1965). [CrossRef]
  14. R. L. Pfleegor, L. Mandel, J. Opt. Soc. Am. 58, 946 (1968). [CrossRef]
  15. B. W. Lindgren, Statistical Theory (Macmillan Co., New York, 1968), p. 142.
  16. W. Martienssen, E. Spiller, Am. J. Phys. 32, 919 (1964). [CrossRef]
  17. R. S. Lawrence, J. W. Strohbehn, Proc. IEEE 58, 1523 (1970). [CrossRef]
  18. V. Bluemel, L. M. Narducci, R. A. Tuft, J. Opt. Soc. Am. 62, 1309 (1972). [CrossRef]
  19. F. Davidson, F. Tittel, IEEE J. Quant. Electron. 10, 409April (1974). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited