OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 14, Iss. 3 — Mar. 1, 1975
  • pp: 593–601

Photopolymer Material for Holography

B. L. Booth  »View Author Affiliations


Applied Optics, Vol. 14, Issue 3, pp. 593-601 (1975)
http://dx.doi.org/10.1364/AO.14.000593


View Full Text Article

Enhanced HTML    Acrobat PDF (1050 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

An experimental Du Pont holographic photopolymer material produces an index modulation in excess of 10−2 utilizing a diffusion mechanism. Optimum exposure in air is typically 30 mJ/cm2, in nitrogen 3 mJ/cm2. Composition, beam ratio, and exposure power all affect the index modulation. This, combined with thickness variations, permits diffraction efficiency to be preadjusted for a variety of desired angular responses and spatial frequencies. The material can be easily overmodulated according to Kogelnik’s phase grating theory. No wet processing is required. After total polymerization, storage at 100°C, −60°C, and under water does not significantly affect the diffraction efficiency. Image–object superposition is exact for real-time holography. Excellent copies of silver halide holograms with four times the original efficiency have been made. Grating devices with tailored peak or flat wavelength response can be constructed.

© 1975 Optical Society of America

History
Original Manuscript: July 29, 1974
Published: March 1, 1975

Citation
B. L. Booth, "Photopolymer Material for Holography," Appl. Opt. 14, 593-601 (1975)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-14-3-593

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

If you are accessing the full text through a member bundle, please use the Enhanced HTML link to gain access to the citation lists and other restricted features. Note that accessing both the PDF and HTML versions of an article will count as only one download against your account.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

If you are accessing the full text through a member bundle, please use the Enhanced HTML link to gain access to the citation lists and other restricted features. Note that accessing both the PDF and HTML versions of an article will count as only one download against your account.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

If you wish to use one of your free member downloads to view the figures, click "Enhanced HTML" above and access the figures from the article itself or from the navigation tab.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

If you are accessing the full text through a member bundle, please use the Enhanced HTML link to gain access to the citation lists and other restricted features. Note that accessing both the PDF and HTML versions of an article will count as only one download against your account.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited