OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 14, Iss. 7 — Jul. 1, 1975
  • pp: 1652–1663

Combined reflection and transmission thin-film ellipsometry: a unified linear analysis

R. M. A. Azzam, M. Elshazly-Zaghloul, and N. M. Bashara  »View Author Affiliations


Applied Optics, Vol. 14, Issue 7, pp. 1652-1663 (1975)
http://dx.doi.org/10.1364/AO.14.001652


View Full Text Article

Enhanced HTML    Acrobat PDF (1626 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A scheme of combined reflection and transmission ellipsometry on light-transmitting ambient–film–substrate systems is proposed and the required sample design and instrument operation are investigated. A comparative study of the sensitivity of external and internal reflection and transmission ellipsometry is carried out based on unified linear approximations of the exact equations. These approximations are general in that an arbitrary initial film thickness is assumed. They are simple, because a complex sensitivity function is introduced whose real and imaginary projections determine the psi (ψ) and delta (Δ) sensitivity factors. Among the conclusions of this paper are the following. (1) External reflection ellipsometry near the Brewster angle of a transparent ambient–substrate system is extremely sensitive to the presence of very thin interfacial films. For example, films as thin as 10−5 Å of gold are readily detectable on glass substrates at an angle of incidence 0.3° below the Brewster angle, assuming a measuring wavelength of 5461 Å with an ellipsometer of 0.05° precision. (2) The formation of thin nonabsorbing films at the interface between transparent ambient and substrate media is not detectable, to first order, as a change in the ellipsometric angle ψ by either internal or external reflection or transmission ellipsometry. (3) The film-detection sensitivity of transmission ellipsometry increases monotonically with angle of incidence. (4) For each angle of external incidence there is a corresponding angle of internal incidence that leads to the same values of the reflection and transmission sensitivity functions. These angles are interrelated by Snell's law. (5) The ranges of validity of the linear approximation in reflection and transmission ellipsometry are comparable. The case of total internal reflection ellipsometry may lead to strong nonlinear behavior of ψ and Δ as functions of the film thickness in the range below 0.05 of the wavelength of light.

© 1975 Optical Society of America

History
Original Manuscript: August 20, 1974
Published: July 1, 1975

Citation
R. M. A. Azzam, M. Elshazly-Zaghloul, and N. M. Bashara, "Combined reflection and transmission thin-film ellipsometry: a unified linear analysis," Appl. Opt. 14, 1652-1663 (1975)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-14-7-1652

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

If you are accessing the full text through a member bundle, please use the Enhanced HTML link to gain access to the citation lists and other restricted features. Note that accessing both the PDF and HTML versions of an article will count as only one download against your account.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

If you are accessing the full text through a member bundle, please use the Enhanced HTML link to gain access to the citation lists and other restricted features. Note that accessing both the PDF and HTML versions of an article will count as only one download against your account.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

If you wish to use one of your free member downloads to view the figures, click "Enhanced HTML" above and access the figures from the article itself or from the navigation tab.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

If you are accessing the full text through a member bundle, please use the Enhanced HTML link to gain access to the citation lists and other restricted features. Note that accessing both the PDF and HTML versions of an article will count as only one download against your account.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited