OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 15, Iss. 11 — Nov. 1, 1976
  • pp: 2884–2890

Silicon vidicon spectrometry and its infrared capabilities for solar research

Jay M. Pasachoff, Daniel F. Muzyka, and J. Phil Schierer, Jr.  »View Author Affiliations


Applied Optics, Vol. 15, Issue 11, pp. 2884-2890 (1976)
http://dx.doi.org/10.1364/AO.15.002884


View Full Text Article

Enhanced HTML    Acrobat PDF (1347 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A rapid-scanning silicon vidicon spectrometer is described; its sensitivity extends from 300 nm to 1080 nm, where even at that wavelength it has enough sensitivity to allow observation under eclipse conditions of a pair of forbidden spectral lines from twelve-times ionized iron that are sensitive indicators of the electron density in the solar corona. Past observational work on these ir lines is reviewed, and our vidicon observations made during the 1973 total solar eclipse are discussed. The vidicon target, the scanning procedure, and the advantages of the spectrometer are described. At the 1973 eclipse, the 1074.7-nm line was detected and an upper limit set for the 1079.8-nm line at a height of 1.4 solar radii. The resultant limit to the ratio of intensities gives electron densities in agreement with those derived from other methods and is consistent with observations made at lower heights; this indicates that the only previous eclipse observation of the ratio at this height was contaminated by scattered light. Our 1973 eclipse observations were limited by the high ambient temperature of the vidicon, by the less-than-optimum match of the focal ratios of the telescope and spectrometer optics, and by problems with the pointing during totality. These difficulties can be overcome, and the silicon vidicon spectrometer will be useful in both eclipse and noneclipse solar observing to map the coronal ir spectrum and also to study the [Fe xiii] ir and interlocking uv lines.

© 1976 Optical Society of America

History
Original Manuscript: June 7, 1976
Published: November 1, 1976

Citation
Jay M. Pasachoff, Daniel F. Muzyka, and J. Phil Schierer, "Silicon vidicon spectrometry and its infrared capabilities for solar research," Appl. Opt. 15, 2884-2890 (1976)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-15-11-2884


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. H. Menzel, J. M. Pasachoff, Appl. Opt. 9, 2626 (1970).
  2. K. E. Kissell, Paul L. Byard, in Proceedings NASA Ames Solar Eclipse Symposium (1966), p. 359.
  3. J. M. Pasachoff, Sci. Am. 229, 68 (October1973).
  4. B. Lyot, Mon. Not. R. Astron. Soc. 99, 580 (1939).
  5. B. Edlén, Z. Astrophys. 22, 30 (1942).
  6. J. Firor, H. Zirin, Astrophys. J. 135, 122 (1962).
  7. J. M. Malville, Astrophys. J. 148, 229 (1967).
  8. R. Chevalier, D. Lambert, Solar Phys. 10, 115 (1969).
  9. G. Ratier, J. P. Rozelot, Solar Phys. 23, 394 (1971).
  10. G. D. Finn, D. A. Landman, Solar Phys. 30, 381 (1973).
  11. D. R. Flower, G. Pineau des Forêts, Astron. Astrophys. 24, 181 (1973).
  12. J. M. Pasachoff, D. F. Muzyka, Vistas Astron. 19, 341 (1976).
  13. J. S. Shklovskii, Physics of the Solar Corona (Pergamon, London, 1965).
  14. H. Zirin, Solar Phys. 11, 497 (1970).
  15. R. Fisher, T. Pope, Solar Phys. 20, 389 (1971).
  16. G. Wlérick, J.-P. Dumont, J.-C. Perche, in The Solar Corona, J. W. Evans, Ed. (Academic, New York, 1963), p. 177.
  17. J.-P. Dumont, J.-C. Perche, 12me Coll. Int. Astrophys. Liège (1964), p. 86.
  18. V. G. Kurt, Astron. Zh. 39, 439 (1962) [Sov. Astron. 6, 349 (1962)].
  19. V. G. Kurt, Astron. Zh. 39, 792 (1962) [Sov. Astron. 6, 620 (1963)].
  20. P. L. Byard, K. E. Kissell, Solar Phys. 21, 351 (1971).
  21. J. A. Eddy, J. M. Malville, Astrophys. J. 150, 289 (1967).
  22. J. A. Eddy, J. W. Firor, R. H. Lee, Astron. J. 72, 1352 (1967).
  23. J. A. Eddy, R. H. Lee, J. P. Emerson, Solar Phys. 30, 351 (1913).
  24. M. H. Crowell, T. M. Buck, E. F. Labuda, J. V. Dalton, E. J. Walsh, Bell Syst. Tech. J. 46, 491 (1967).
  25. E. I. Gordon, Bell Lab. Rec. 45, 174 (1967).
  26. F. W. Reynolds, Solid State Light Sensitive Storage Device, U.S. Patent3,011,089, issued 28November1961.
  27. P. H. Wendland, IEEE Trans. Electron Devices ED-14, 285 (1967).
  28. P. Fellgett, J. Phys. Rad. 19, 187 (1958).
  29. D. F. Ritz, IEEE Trans. Electron Devices ED-20, 1042 (1973).
  30. J. Reader, J. Opt. Soc. Am. 59, 1189 (1969).
  31. A. B. Shafer, L. R. Megill, L. Droppleman, J. Opt. Soc. Am. 54, 879 (1964).
  32. A. S. Grove, Physics and Technology of Semiconductor Devices (Wiley, New York, 1967).
  33. A. K. Pierce, L. Testerman, An Atlas of the Solar Spectrum (Kitt Peak National Observatory, Tucson, 1972).
  34. J. M. Pasachoff, D. F. Muzyka, Bull. Am. Astron. Soc. 7, 409 (1975).
  35. D. R. Flower, H. Nussbaumer, Astron. Astrophys. 31, 353 (1974).
  36. M. Malinovsky, L. Heroux, Astrophys. J. 181, 1009 (1973).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited