Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Leaf optical system modeled as a stochastic process

Not Accessible

Your library or personal account may give you access

Abstract

A stochastic leaf radiation model based upon physical and physiological properties of dicot leaves has been developed. The model accurately predicts the absorbed, reflected, and transmitted radiation of normal incidence as a function of wavelength resulting from the leaf–irradiance interaction over the spectral interval of 0.40–2.50 μm. The leaf optical system has been represented as Markov process with a unique transition matrix at each 0.01-μm increment between 0.40 μm and 2.50 μm. Probabilities are calculated at every wavelength interval from leaf thickness, structure, pigment composition, and water content. Simulation results indicate that this approach gives accurate estimations of actual measured values for dicot leaf absorption, reflection, and transmission as a function of wavelength.

© 1977 Optical Society of America

Full Article  |  PDF Article
More Like This
Three-dimensional radiation transfer modeling in a dicotyledon leaf

Yves M. Govaerts, Stéphane Jacquemoud, Michel M. Verstraete, and Susan L. Ustin
Appl. Opt. 35(33) 6585-6598 (1996)

Relation of Light Reflectance to Histological and Physical Evaluations of Cotton Leaf Maturity

H. W. Gausman, W. A. Allen, R. Cardenas, and A. J. Richardson
Appl. Opt. 9(3) 545-552 (1970)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (8)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (2)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (12)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved