OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 17, Iss. 13 — Jul. 1, 1978
  • pp: 2053–2057

Suppression of self-focusing through low-pass spatial filtering and relay imaging

J. T. Hunt, J. A. Glaze, W. W. Simmons, and P. A. Renard  »View Author Affiliations

Applied Optics, Vol. 17, Issue 13, pp. 2053-2057 (1978)

View Full Text Article

Enhanced HTML    Acrobat PDF (611 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Self-focusing effects in large, high power laser amplifiers become manifest as small-scale beam instabilities and as large-scale phase aberrations. Spatial filtering has been shown to control instabilities; spatial filters constitute appropriate lens pair elements for image relaying as well. In this paper, image relaying is presented as a technique for preserving the transverse intensity profile of a high power beam as it propagates long distances through nonlinear elements. As a consequence, amplifier apertures can be filled more effectively, leading to a doubling of fixed-aperture system performance. A rationale for optimal selection of spatial filter bandpass is also presented. This selection, as might be expected, depends upon details of the beam's spatial structure as it enters any filter. A geometrical optics approach is used throughout; nevertheless, derived results remain valid when diffraction is included.

© 1978 Optical Society of America

Original Manuscript: September 24, 1977
Published: July 1, 1978

J. T. Hunt, J. A. Glaze, W. W. Simmons, and P. A. Renard, "Suppression of self-focusing through low-pass spatial filtering and relay imaging," Appl. Opt. 17, 2053-2057 (1978)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. E. S. Bliss, J. T. Hunt, P. A. Renard, G. E. Sommargren, H. J. Weaver, IEEE J. Quantum Electron. QE-12, 402 (1976). [CrossRef]
  2. W. W. Simmons, S. Guch, F. Rainer, J. E. Murray, IEEE J. Quantum Electron. QE-11, 31D (1975).
  3. J. T. Hunt, P. A. Renard, W. W. Simmons, Appl. Opt. 16, 779 (1977). [PubMed]
  4. J. A. Glaze, Opt. Eng. 15, 136 (1976). [CrossRef]
  5. A. Yariv, Introduction to Optical Electronics (Holt, Rinehart, and Winston, New York, 1971), p. 20.
  6. M. Born, E. Wolf, Principles of Optics (Pergamon, London, 1970), p. 116.
  7. P. Renard, J. T. Hunt, “Artemis: A Diffraction Model for Light Propagation,” Lawrence Livermore Laboratory Internal Report UCID 17381 (February1977);A. E. Siegman, E. A. Sziklas, Appl. Opt. 13, 2775 (1974). [CrossRef] [PubMed]
  8. A. J. Campillo, J. E. Pearson, S. L. Shapiro, J. J. Terrell, Appl. Phys. Lett. 23, 85 (1973) [CrossRef]
  9. B. R. Suydam, IEEE J. Quantum Electron. QE-11, 225 (1975). [CrossRef]
  10. W. W. Simmons, D. R. Speck, J. T. Hunt, IEEE J. Quantum Electron. QE-13, 50 (1977).
  11. V. I. Bespalov, V. I. Talanov, JETP Lett. 3, 307 (1966).
  12. E. S. Bliss, D. R. Speck, J. F. Holzrichter, J. H. Erkkila, A. J. Glass, Appl. Phys. Lett. 25, 448 (1974). [CrossRef]
  13. D. Auric, A. Labadens, J. Guyot, Opt. Commun. 18, 176 (1976). [CrossRef]
  14. ω is related to the more conventional waist w by ω = (2)1/2w.
  15. A. Maitland, M. H. Dunn, Laser Physics (North-Holland, Amsterdam, 1969), p. 160.
  16. H. Sagan, Boundary Value and Eigenvalue Problems in Mathematical Physics (Wiley, New York, 1961), p. 107.
  17. M. Abramowitz, I. A. Stegun, Eds., Handbook of Mathematical Functions, AMS 55 (U.S. Government Printing Office, Washington, D.C., 1965), p. 361.
  18. This result is similar to that presented by B. R. Suydam in Ref. 9.
  19. This approximation has been invoked by many authors (see, for example, Refs. 9 and 12). When it is not satisfied, the physical situation becomes difficult to model.
  20. J. B. Trenholme, Lawrence Livermore Laboratory; private communication.
  21. A. J. Campillo et al., Appl. Phys. Lett. 25, 408 (1974). [CrossRef]
  22. J. T. Hunt, P. A. Renard, R. G. Nelson, Appl. Opt. 15, 1458 (1976). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited