OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 17, Iss. 4 — Feb. 15, 1978
  • pp: 520–525

Nonlinear reflection properties of germanium associated with thermal effects

R. M. Herman, C. L. Chin, and E. Young  »View Author Affiliations

Applied Optics, Vol. 17, Issue 4, pp. 520-525 (1978)

View Full Text Article

Enhanced HTML    Acrobat PDF (789 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Thermal excitations on a germanium surface under simultaneous irradiation by two monochromatic optical beams, one strong and one weak, are predicted as functions of the angular separation and frequency difference between the beams, their relative polarization, their intensities, and pulse durations. Nonlinear optical reflection for Q-switched ruby laser pulses is then described. Weak reflected and diffracted beam intensities show tendencies in which the former is preferentially enhanced for a downshifted weak beam frequency, while the latter depends only on the shift magnitude. Both are suppressed for large shifts or large angular separations between input beams.

© 1978 Optical Society of America

Original Manuscript: June 27, 1977
Published: February 15, 1978

R. M. Herman, C. L. Chin, and E. Young, "Nonlinear reflection properties of germanium associated with thermal effects," Appl. Opt. 17, 520-525 (1978)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. C. H. Carmichael, G. N. Simpson, Nature 202, 787 (1964);W. R. Sooy, M. Geller, D. P. Bortfeld, Appl. Phys. Lett. 5, 54 (1964);M. Birnbaum, J. Appl. Phys. 36, 657 (1965);M. Birnbaum, T. L. Stocker, Br. J. Appl. Phys. 17, 461 (1966). [CrossRef]
  2. A. M. Bonch-Bruevich, V. P. Kovalev, G. S. Romanov, Ya. A. Imas, M. N. Libenson, Sov. Phys. Tech. Phys. 13, 507 (1968);I. Nagata, R. J. Galagali, S. Horiguchi, T. Sakai, T. Nakaya, J. Phys. D 3, 1305 (1970). [CrossRef]
  3. C. J. Kennedy, J. C. Matter, A. L. Smirl, H. Weichel, F. A. Hopf, S. V. Pappu, M. O. Scully, Phys. Rev. Lett. 32, 419 (1974);A. L. Smirl, J. C. Matter, A. Elci, M. O. Scully, Opt. Commun. 16, 118 (1976). [CrossRef]
  4. D. H. Auston, C. V. Shank, Phys. Rev. Lett. 32, 1120 (1974). [CrossRef]
  5. C. V. Shank, D. H. Auston, Phys. Rev. Lett. 34, 479 (1975);D. H. Auston, C. V. Shank, P. LeFur, Phys. Rev. Lett. 35, 1022 (1975). [CrossRef]
  6. T. A. Wiggins, A. Salik, Appl. Phys. Lett. 25, 438 (1974). [CrossRef]
  7. T. A. Wiggins, J. A. Bellay, A. H. Carrieri, Appl. Opt. 17, 526 (1978). [CrossRef] [PubMed]
  8. A. J. Alcock, P. B. Corkum, D. J. James, Appl. Phys. Lett. 27, 680 (1975). [CrossRef]
  9. S. A. Jamison, A. V. Nurmikko, H. J. Gerritsen, Appl. Phys. Lett. 39, 640 (1976). [CrossRef]
  10. R. M. Herman, M. A. Gray, Phys. Rev. Lett. 19, 824 (1967);D. H. Rank, C. W. Cho, N. D. Foltz, T. A. Wiggins, Phys. Rev. Lett. 19, 828 (1967);T. A. Wiggins, C. W. Cho, D. R. Dietz, N. D. Foltz, Phys. Rev. Lett. 20, 831 (1968);M. A. Gray, R. M. Herman, Phys. Rev. 181, 374 (1968);A. O. Creaser, R. M. Herman, Phys. Rev. Lett. 29, 147 (1972);SeeI P. Batra, R. H. Enns, D. Pohl, Phys. Status Solidi B 48, 10 (1971) for a general review of progress in this field. [CrossRef]
  11. Auston and Shank4 have found the solution for a similar transport equation at z = 0, in which their source term is spatially distributed and instantaneous in time, in contrast to the source term in the present treatment, which is localized in space and distributed in time. The solutions are compatible in the limits of localization both in space and time.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited