OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 17, Iss. 4 — Feb. 15, 1978
  • pp: 635–641

Exploding PbS film Q-switch laser

M. J. Landry  »View Author Affiliations

Applied Optics, Vol. 17, Issue 4, pp. 635-641 (1978)

View Full Text Article

Enhanced HTML    Acrobat PDF (981 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Exploding PbS film Q-switches in a Nd3+ glass laser produce ≈40-nsec. giant pulses. This investigation characterizes the laser giant pulse energy, over-all efficiency and ratio of giant pulse energy to total output energy as functions of flashlamp input energy, PbS film reflectivity, output mirror reflectivity, and flashlamp pulse width for both an apertured and unapertured laser. The laser emits giant pulses which contain 0.88 J and 1.8 J of energy, at an over-all efficiency of 0.086% and 0.21% for an apertured and unapertured laser, respectively, and ratios of giant pulse energy to total output energy approaching 100%. This investigation has illustrated that a laser Q-switched by a PbS exploding film can emit more energy, more efficiently, than the same laser Q-switched by a conventional Pockels cell. It is suspected that PbS is not the most efficient material; however, other material could be tested in a similar manner to determine a more optimum material.

© 1978 Optical Society of America

Original Manuscript: June 27, 1977
Published: February 15, 1978

M. J. Landry, "Exploding PbS film Q-switch laser," Appl. Opt. 17, 635-641 (1978)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. T. H. Maiman, Nature 187, 493 (1960). [CrossRef]
  2. R. W. Hellworth, Advances in Quantum Electronics, J. R. Singer, Ed. (Columbia U. P., New York, 1961), p. 334.
  3. F. J. McClung, R. W. Hellworth, Proc. IEEE 51, 46 (1963). [CrossRef]
  4. J. I. Masters, J. H. Ward, Proc. IEEE 51, 221 (1963). [CrossRef]
  5. A. J. De Maria, R. Gagosz, G. Barnard, J. Appl. Phys. 34, 453 (1963). [CrossRef]
  6. P. P. Sorokin, J. J. Luzzi, J. R. Lamkard, G. D. Petit, IBM J. Res. Dev. 8, 182 (1964). [CrossRef]
  7. I. M. Korda, A. N. Rubinov, Sov. J. Quantum Electron. 4, 1048 (1975). [CrossRef]
  8. G. Bret, F. Gires, Appl. Phys. Lett. 4, 175 (1964). [CrossRef]
  9. N. T. Melamed, C. Hirayama, P. W. French, Appl. Phys. Lett. 6, 43 (1965). [CrossRef]
  10. H. W. Gandy, R. J. Ginther, J. F. Weller, Appl. Phys. Lett. 7, 233 (1965). [CrossRef]
  11. D. G. Grant, Proc. IEEE 51, 604 (1963). [CrossRef]
  12. J. I. Masters, J. Ward, E. Hantouni, Rev. Sci. Instrum. 34, 364 (1963). [CrossRef]
  13. G. Dube, Appl. Opt. 14, 553 (1975). [CrossRef]
  14. These etalons are made of quartz flats. The 87% reflecting etalon has a free spectral range of 0.01 nm and spectral width of 0.0063 nm.
  15. Measured by a specially equipped Beckman spectrophotometer to be published by H. P. Davis and M. J. Landry.
  16. M. J. Landry, R. A. Langley, to be published.
  17. A. A. Vuylsteke, J. Appl. Phys. 34, 1615 (1963). [CrossRef]
  18. W. G. Wagner, B. A. Langyel, J. Appl. Phys. 34, 2040 (1963). [CrossRef]
  19. J. E. Midwinter, Br. J. Appl. Phys. 16, 1125 (1965). [CrossRef]
  20. M. J. Landry, Appl. Opt. 13, 63 (1974);M. J. Landry, Sandia Laboratories, SLA 73-0347 (1973). [CrossRef] [PubMed]
  21. V. P. Kalinin, V. U. Lyubiniov, Opt. Spectrosc. 22, 64 (1967).
  22. A. S. Eremenko et al., Sov. J. Quantum Electron. 2, 219 (1972). [CrossRef]
  23. This work was performed at Sandia Laboratories, Livermore, Calif., with the assistance of C. A. Wright.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited