OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 18, Iss. 19 — Oct. 1, 1979
  • pp: 3230–3241

Fiber optic lever displacement transducer

R. O. Cook and C. W. Hamm  »View Author Affiliations

Applied Optics, Vol. 18, Issue 19, pp. 3230-3241 (1979)

View Full Text Article

Enhanced HTML    Acrobat PDF (1666 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Intrinsic performance limits of noncontacting fiber lever displacement measuring systems are quantitatively described. Generalized relationships linking displacement detection limit, frequency response, dynamic range, linearity, and working distance to fiber diameter, illumination irradiance and coupling angle, photo-detector characteristics, and reflection and transmission losses were obtained by analysis and confirmed by measurement. Both procedures showed performance limits to be functions of the square root of the flux density coupled into the target-illuminating fiber(s) by the electroluminescent source. Displacement detection and bandwidth limits achievable with tungsten or LED sources were in the 2 × 10−11 to 2 × 10 - 12 m / Hz and MHz, range respectively. A basis for optimizing levers for different applications and determination of intrinsic performance limits is provided.

© 1979 Optical Society of America

Original Manuscript: December 18, 1978
Published: October 1, 1979

R. O. Cook and C. W. Hamm, "Fiber optic lever displacement transducer," Appl. Opt. 18, 3230-3241 (1979)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. A. Simpson, Rev. Sci. Instrum. 42, 1371 (1971). [CrossRef]
  2. A. W. Hartman, F. W. Roseberry, J. A. Simpson, Opt. Eng. 12, 95 (1973). [CrossRef]
  3. J. Simon, Appl. Opt. 9, 2337 (1970). [CrossRef] [PubMed]
  4. R. G. Goldman, W. R. Marklein, in Third Annual Symposium on Non-Destructive Testing of Missiles and Aircraft Components (Society for Non-Destructive Testing, San Antonio, Texas, 1963). Also described in U.S. Patent3,263,087 (1966),
  5. B. O. Kelly, Laser Focus, 11, (3), 38 (March1976).
  6. R. V. Jones, F. C. S. Richards, J. Sci. Instrum. 36, 90 (1959). [CrossRef]
  7. Frank’s disclosure preceded Kissinger’s by less than 2 weeks. While both disclosed the concept, Frank only claimed usages relating to diaphragm-type pressure transducers, thus leaving other usages (excepting reflectance compensation methods granted Kissinger) in the public domain.
  8. C. D. Kissinger, Fiber Optic Proximity Probe, U.S. Patent3,327,584 (27Sept.1967).
  9. W. E. Frank, Detection and Measurement Device having a Small Flexible Fiber Transmission Line (U.S. Patent3,273,447, 20Sept.1966).
  10. R. Hokenberg, Exptl. Mech. 7, 19A (June1967). [CrossRef]
  11. G. J. Jako, L. A. Maroti, S. Holly, J. Acoust. Soc. Am. 41, 1578 (1967). [CrossRef]
  12. R. O. Cook, T. Konishi, C. W. Hamm, A. H. Yankwich, J. Acoust. Soc. Am. 58, Suppl. 1, 447 (1975).
  13. R. O. Cook, T. Konishi, C. W. Hamm, A. H. Yankwich, L. Royster, J. Acoust. Soc. Am. 58, Suppl. 1, 448 (1975).
  14. R. O. Cook, “The Response of Guinea Pig Ears to Pure Tones, Speech and other Complex Waveforms Imparted Acoustically and by Ossicular Chain Coupled Piezoelectric Type Transducers,” unpublished Ph.D. dissertation, North Carolina State University, Raleigh (1976); available from University Microfilms, Ann Arbor, Michigan.
  15. J. Sanford, Des. News, 10, 8 (Feb.3, 1975).
  16. W. R. Moore, Am. Mach. 110, (18), 65 (Aug.29, 1966).
  17. J. Thorson, D. C. S. White, IEEE Trans. Biomed. Eng. BME-22, 293 (1975). [CrossRef]
  18. R. H. Pahler, A. S. Roberts, Am. Soc. Mech. Eng. Pap. 75-WA/DE-8 (1975).
  19. H. Matsumoto et al., Jpn. Med. Electron. Biol. Eng. 15, 480 (1977).
  20. A. Rameriz et al., J. Appl. Physiol. 26, 679 (1969).
  21. R. Cook, C. Hamm, A. Akay, J. Acoust. Soc. Am. 64, Suppl. 1, EE3 (1978).
  22. F. J. Crispi, G. C. Maling, A. W. Rzant, J. Res. Dev. 16, 307 (1972).
  23. The “Fotonic Sensor,” a trademark of Mechanical Technology, Inc., Latham, New York.
  24. C. Menadier, C. Kissinger, H. Adkins, Instrum. Control Syst. 40, 114 (1967).
  25. Sound pressure levels associated with normal speech (45–75 dB) produce ossicular chain displacements on the order of 1–30 Å.26 Some nerve impulses produce similar displacements.27
  26. M. Lawrence, in Sensorineural Hearing Processes and Disorders, A. B. Graham, Ed. (Little Brown, Boston, 1967).
  27. B. C. Hill, E. D. Schubert, M. A. Nokes, R. P. Michaelson, Science 196, 426 (1977). [CrossRef] [PubMed]
  28. Coupling of collimated rays is only one of several methods by which rays traveling at the same angle to a fiber’s longitudinal axis may be produced. Others include creating microbends in fibers by applying pressure and appropriately blocking the light leaving condensing lenses.
  29. A term P¯DC = PDC/PMDC is the ratio of power subtended at arbitrary target distances (PDC) to maximum subtended power (PMDC); differentiation of this term and Eq. (5) lead to Eq. (12), since DS = dy/dPDC by definition.
  30. S. Larach, Photoelectronic Devices and Materials (Van Nostrand, Princeton, N.J., 1965), Chap. 5.
  31. An analysis of the sources of intrinsic noise in various photodiode-op-amp combinations may be found in Refs. 32 and 33, supplemented by specific manufacturers literature.
  32. A. E. Barelli, Electron. Des. 15, 68 (July1973).
  33. P. H. Wendland, Electronics, 44 (11), 50 (May1971).
  34. An exception occurs where the luminous spectrum of the source extends well into the IR, i.e., beyond the response range of silicon or germanium detectors and at very low frequencies (<10 Hz) where 1/f intrinsic noise begins to exceed shot noise in most electronic devices.
  35. M. Madden, Opt. Spectra 12 (11), 51 (1978).
  36. D. B. Keck, Appl. Opt. 13, 1882 (1974). [CrossRef] [PubMed]
  37. , “Plastic Fiber Optics,” in Encyclopedia of Polymer Science and Technology (Wiley, New York, 1971), Vol. 15, p. 202.
  38. A trademark of Galite, Inc., Wallingford, Conn.
  39. W. J. Smith, Modern Optical Systems (McGraw-Hill, New York, 1966), p. 182.
  40. J. P. Wittke, M. Ettenberg, H. Kressel, RCA Rev. 37, 159 (1976).
  41. T. P. Lee, C. A. Burrus, IEEE J. Quantum. Electron. QE-8, 370 (1972).
  42. G. Tenchio, Electron. Lett. 12, 562 (1976). [CrossRef]
  43. J. L. Paoli, IEEE J. Quantum. Electron. QE-II, 276 (1975). [CrossRef]
  44. A. E. Barelli, report to the Deafness Research Foundation, 366 Madison Avenue, New York, N.Y. 10017 (August1974).
  45. H. Kressel, Appl. Opt. 17, 2233 (1978). [CrossRef] [PubMed]
  46. Working distance, standoff distance, and equilibrium distance are used interchangeably. Each refers to the fiber tip-to-target distance when the target is at rest. This distance is usually set to correspond to the approximate center of the dynamic range of the vibrating target.
  47. C. D. Kissinger, R. L. Smith in Proceedings of the Electro-Optical Systems Design Conference, 1973 (I.S.C.M., 222 W. Adams St., Chicago, Ill. 60606).
  48. C. D. Kissinger, B. Howland, Fiber Optic Displacement Measurement Apparatus, U.S. Patent3,940,608 (24Feb.1976).
  49. G. E. Moss, L. R. Miler, R. L. Forward, Appl. Opt. 10, 2495 (1971). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited