OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 18, Iss. 2 — Jan. 15, 1979
  • pp: 149–162

Optical computation using residue arithmetic

Alan Huang, Yoshito Tsunoda, Joseph W. Goodman, and Satoshi Ishihara  »View Author Affiliations


Applied Optics, Vol. 18, Issue 2, pp. 149-162 (1979)
http://dx.doi.org/10.1364/AO.18.000149


View Full Text Article

Enhanced HTML    Acrobat PDF (1750 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Using residue arithmetic it is possible to perform additions, subtractions, multiplications, and polynomial evaluation without the necessity for carry operations. Calculations can, therefore, be performed in a fully parallel manner. Several different optical methods for performing residue arithmetic operations are described. A possible combination of such methods to form a matrix vector multiplier is considered. The potential advantages of optics in performing these kinds of operations are discussed.

© 1979 Optical Society of America

History
Original Manuscript: May 6, 1978
Published: January 15, 1979

Citation
Alan Huang, Yoshito Tsunoda, Joseph W. Goodman, and Satoshi Ishihara, "Optical computation using residue arithmetic," Appl. Opt. 18, 149-162 (1979)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-18-2-149


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. A. Monahan, K. Bromley, R. P. Booker, Proc. IEEE 65, 121 (1977). [CrossRef]
  2. A. Vander Lugt, Proc. IEEE 62, 1300 (1974). [CrossRef]
  3. J. W. Goodman, Proc. IEEE 65, 29 (1977). [CrossRef]
  4. V. N. Morozov, in Digest of Technical Papers, CLEA (1977), p. 81, IEEE Cat. No. 78 CH1281-5QEA.
  5. K. Preston, Coherent Optical Computers (McGraw-Hill, New York, 1972), p. 232.
  6. D. H. Schaefer, J. P. Strong, Proc. IEEE 65, 129 (1977). [CrossRef]
  7. N. G. Basov, W. H. Culver, B. Shah, in Laser Handbook, F. T. Arecchi, E. O. Schulz-DuBois, Eds. (North-Holland, Amsterdam, 1972), p. 1651.
  8. H. F. Taylor, Appl. Opt. 17, 1493 (1978). [CrossRef] [PubMed]
  9. P. W. Cheney, “An Investigation of Residue Number Theory for Digital Systems,” Ph.D. Dissertation, Stanford University, September (1961).
  10. J. W. Bond, Naval Undersea Center report AD-780-805-D1 (1974).
  11. A. Huang, “The Implementation of a Residue Arithmetic Unit Via Optical and Other Physical Phenomena,” in Proceedings of the International Optical Computing Conference, April1975, Washington, D.C., IEEE Cat. No. 75 CH0941-5 C.
  12. H. L. Garner, IRE Trans. Electron. Comput. EC-8, 140 (1959). [CrossRef]
  13. N. S. Szabo, R. I. Tanaka, Residue Arithmetic and Its Applications to Computer Technology (McGraw-Hill, New York, 1967).
  14. A. Svoboda, M. Valach, “Rational System of Residue Classes,” in Stroje na Zpraccovani Informaci, Sbornik V, Nakl. CSZV. Prha, 1957 (in English), pp. 9–37.
  15. A. Svoboda, M. Valach, “Computer Progress in Czechoslovakia II, The Numerical Systems of Residue Classes,” in Digital Information Processor, W. Hoffman, Ed. (Wiley, New York, 1962).
  16. D. E. Knuth, in Seminumerical Algorithms (Addison-Wesley, Reading, Mass., 1969), pp. 248–256.
  17. N. S. Szabo, R. I. Tanaka, in Seminumerical Algorithms (Addison-Wesley, Reading, Mass., 1969), pp. 160–162.
  18. S. A. Collins, Proc. Soc. Photo Opt. Instrum. Eng. 128, 313 (1977).
  19. W. Stoner, Systems Applications, Inc., Bedford, Mass.; private communication.
  20. A convenient property of cyclic maps is that they can be built from smaller cyclic maps. A cyclic shift of 7 can be constructed by cascading cyclic shifts of 1, 2 and 4. This binary decomposition technique reduces the number of types of cyclic maps that are needed.
  21. S. K. Sheem, C. S. Tsai, Appl. Opt. 17, 892 (1978). [CrossRef] [PubMed]
  22. B. Chen, M. K. Barnoski, C. M. Beijer, “Thin Film Bragg Switch,” in Digest of Topical Meeting on Integrated and Fiber Optics, Salt Lake City (Optical Society of America, Washington, D.C., 1978).
  23. R. V. Schmidt, H. Kogelnik, Appl. Phys. Lett. 28, 503 (1976). [CrossRef]
  24. A. Huang, Y. Tsunoda, J. W. Goodman, “Optical Computation Using Residue Arithmetic,” Technical Report 6422-1, Stanford Electronics Laboratories, Stanford, Calif. 94305 (1978).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited