OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 18, Iss. 5 — Mar. 1, 1979
  • pp: 712–723

Light scattering properties of spheroidal particles

Shoji Asano  »View Author Affiliations


Applied Optics, Vol. 18, Issue 5, pp. 712-723 (1979)
http://dx.doi.org/10.1364/AO.18.000712


View Full Text Article

Enhanced HTML    Acrobat PDF (1441 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Light scattering characteristics of spheroidal particles are studied for a wide range of particle parameters and orientations. The method of computation is based on the scattering theory for a homogeneous spheroid developed by us, and the calculation is extended to fairly large spheroidal particles of a size parameter up to 30. Effects of the particle size, shape, index of refraction, and orientation on the scattering efficiency factors and the scattering intensity functions are investigated and interpreted physically. The scattering properties of prolate and oblate spheroids with incidence parallel to the rotation axis constitute the extremes. The prolate spheroids at parallel incidence have steep and high resonance maxima in the scattering efficiency factors and broad and low forwardscattering peaks in the intensity functions; on the other hand, the oblate spheroids at parallel incidence have broad and low resonance maxima and sharp and high forwardscattering peaks. With an increase of the incidence angle, the scattering behavior of prolate spheroids approaches that of oblate spheroids at parallel incidence and vice versa. It is shown that, for oblique incidence, the scattering properties of a long slender prolate spheroid resemble those of an infinitely long circular cylinder. Effects of absorption on the extinction efficiency factors and scattering intensity functions are examined. Some problems in numerical calculation of the spheroidal wave functions and the infinite series solutions are discussed.

© 1979 Optical Society of America

History
Original Manuscript: September 27, 1978
Published: March 1, 1979

Citation
Shoji Asano, "Light scattering properties of spheroidal particles," Appl. Opt. 18, 712-723 (1979)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-18-5-712

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

If you are accessing the full text through a member bundle, please use the Enhanced HTML link to gain access to the citation lists and other restricted features. Note that accessing both the PDF and HTML versions of an article will count as only one download against your account.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

If you are accessing the full text through a member bundle, please use the Enhanced HTML link to gain access to the citation lists and other restricted features. Note that accessing both the PDF and HTML versions of an article will count as only one download against your account.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

If you wish to use one of your free member downloads to view the figures, click "Enhanced HTML" above and access the figures from the article itself or from the navigation tab.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

If you are accessing the full text through a member bundle, please use the Enhanced HTML link to gain access to the citation lists and other restricted features. Note that accessing both the PDF and HTML versions of an article will count as only one download against your account.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited