OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 19, Iss. 14 — Jul. 15, 1980
  • pp: 2298–2309

Numerical methods for the generation of empirical and analytical transmittance functions with applications to atmospheric trace gases

Joseph H. Pierluissi and Ken Tomiyama  »View Author Affiliations


Applied Optics, Vol. 19, Issue 14, pp. 2298-2309 (1980)
http://dx.doi.org/10.1364/AO.19.002298


View Full Text Article

Enhanced HTML    Acrobat PDF (1047 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A numerical approach is taken in the study of two methods commonly used in the development of band models for the calculation of gaseous molecular transmittance in the IR region. The first method considered is for the determination of a discrete transmittance function without the use of an analytical band model. This method is then modified assuming a piecewise continuous function to provide for interpolation between the discrete points. The second method relaxes restrictions inherent to the first and assumes an analytical function over the entire range of transmittance values. Although the theory is generally applicable to other gaseous absorbers, it is specifically applied to 20-cm−1 resolution data for the major bands of the atmospheric trace gases SO2, NH3, NO, and NO2. The spectral parameters are listed for the convenience of model users at 5-cm−1 intervals throughout the bands.

© 1980 Optical Society of America

History
Original Manuscript: February 13, 1980
Published: July 15, 1980

Citation
Joseph H. Pierluissi and Ken Tomiyama, "Numerical methods for the generation of empirical and analytical transmittance functions with applications to atmospheric trace gases," Appl. Opt. 19, 2298-2309 (1980)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-19-14-2298


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. W. M. Elsasser, Phys. Rev. 34, 126 (1938). [CrossRef]
  2. R. A. McClatchey, R. W. Fenn, J. E. A. Selby, F. E. Volz, J. S. Garing, “Optical Properties of the Atmosphere,” AFCRL Environmental Research Paper 331 (AFCRL, Hanscom AFB, Mass., 1970).
  3. J. E. A. Selby, F. X. Kneizys, J. H. Chetwynd, R. A. McClatchey, “Atmospheric Transmittance/Radiance: Computer Code Lowtran 4,” AFGL Environmental Research Paper 626 (AFGL, Hanscom AFB, Mass., 1978).
  4. R. M. Goody, Q. J. R. Meteorol. Soc. 78, 165 (1952). [CrossRef]
  5. C. D. Rodgers, “Approximate Methods of Calculating Transmission by Bands of Spectral Lines,” National Center for Atmospheric Research Technical Note 116+1A (NCAR, Boulder, Colo., 1976).
  6. J. I. F. King, “Statistical Transmission Models of Arbitrary Variance,” Proc. IRIS 4 (1959).
  7. R. R. Gruenzel, Appl. Opt. 17, 2591 (1978). [PubMed]
  8. M. Aoki, Introduction to Optimization Theory (Macmillan, New York, 1971).
  9. IBM Manual System/360, Scientific Subroutine Package H20-0205-3 (IBM, New York, 1968).
  10. R. M. Goody, Atmospheric Radiation (Oxford U.P., London, 1961).
  11. J. H. Pierluissi, K. Tomiyama, R. B. Gomez, Appl. Opt. 18, 1607 (1979). [CrossRef] [PubMed]
  12. W. L. Smith, “A Polynomial Representation of Carbon Dioxide and Water Vapor Transmission,” ESSA Technical Report NESC47 (National Environmental Satellite Center, Washington, D.C., 1969).
  13. L. S. Rothman, S. A. Clough, R. A. McClatchey, L. G. Young, D. E. Snider, A. Goldman, Appl. Opt. 17, 507 (1978). [CrossRef] [PubMed]
  14. J. H. Pierluissi, G. A. Gibson, R. B. Gomez, Appl. Opt. 17, 1425 (1978). [CrossRef] [PubMed]
  15. R. A. McClatchey, A. P. D'Agati, “Atmospheric Transmission of Laser Radiation: Computer Code LASER,” AFGL Environmental Research Paper 622 (AFGL, Hanscom AFB, Mass., 1978).
  16. S. L. Valley, Ed., Handbook of Geophysics and Space Environments (McGraw-Hill, New York, 1965).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited