OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 19, Iss. 2 — Jan. 15, 1980
  • pp: 293–300

Rotational nonequilibrium mechanisms in pulsed H2 + F2 chain reaction lasers. 2: Effect of VR energy exchange

R. L. Kerber, R. C. Brown, and K. A. Emery  »View Author Affiliations


Applied Optics, Vol. 19, Issue 2, pp. 293-300 (1980)
http://dx.doi.org/10.1364/AO.19.000293


View Full Text Article

Enhanced HTML    Acrobat PDF (1002 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The occurrence of pure rotational-to-rotational lasing from high J levels suggests that present rotational nonequilibrium mechanisms are inadequate to explain all lasing behavior of the HF laser. A possible mechanism for explaining this behavior is vibrational-to-rotational energy transfer. The usual assumption that vibrational relaxation occurs with rotational levels at equilibrium at the translational temperature is replaced with a near resonant multiquanta VR process that results in the formation of highly excited rotational states. Computer simulations incorporating VR relaxation predicted significant occurrence of rotational lasing. A simpler model that produced rotational nonequilibrium from pumping and P-branch lasing did not exhibit rotational lasing. Rotational lasing did not decrease energy available to P-branch lasing and produced effects resembling an increase in rotational relaxation rates. Rotational lasing is very sensitive to kinetics for both VR energy exchange and rotational relaxation.

© 1980 Optical Society of America

History
Original Manuscript: July 19, 1979
Published: January 15, 1980

Citation
R. L. Kerber, R. C. Brown, and K. A. Emery, "Rotational nonequilibrium mechanisms in pulsed H2 + F2 chain reaction lasers. 2: Effect of VR energy exchange," Appl. Opt. 19, 293-300 (1980)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-19-2-293

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited