OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 19, Iss. 2 — Jan. 15, 1980
  • pp: 293–300

Rotational nonequilibrium mechanisms in pulsed H2 + F2 chain reaction lasers. 2: Effect of VR energy exchange

R. L. Kerber, R. C. Brown, and K. A. Emery  »View Author Affiliations


Applied Optics, Vol. 19, Issue 2, pp. 293-300 (1980)
http://dx.doi.org/10.1364/AO.19.000293


View Full Text Article

Enhanced HTML    Acrobat PDF (1002 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The occurrence of pure rotational-to-rotational lasing from high J levels suggests that present rotational nonequilibrium mechanisms are inadequate to explain all lasing behavior of the HF laser. A possible mechanism for explaining this behavior is vibrational-to-rotational energy transfer. The usual assumption that vibrational relaxation occurs with rotational levels at equilibrium at the translational temperature is replaced with a near resonant multiquanta VR process that results in the formation of highly excited rotational states. Computer simulations incorporating VR relaxation predicted significant occurrence of rotational lasing. A simpler model that produced rotational nonequilibrium from pumping and P-branch lasing did not exhibit rotational lasing. Rotational lasing did not decrease energy available to P-branch lasing and produced effects resembling an increase in rotational relaxation rates. Rotational lasing is very sensitive to kinetics for both VR energy exchange and rotational relaxation.

© 1980 Optical Society of America

History
Original Manuscript: July 19, 1979
Published: January 15, 1980

Citation
R. L. Kerber, R. C. Brown, and K. A. Emery, "Rotational nonequilibrium mechanisms in pulsed H2 + F2 chain reaction lasers. 2: Effect of VR energy exchange," Appl. Opt. 19, 293-300 (1980)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-19-2-293


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. L. Kerber, J. J. T. Hough, Appl. Opt. 17, 2369. (1978). [CrossRef] [PubMed]
  2. J. J. T. Hough, R. L. Kerber, Appl. Opt. 14, 2960 (1975). [CrossRef] [PubMed]
  3. J. R. Creighton, “A Numerical Investigation of the Pulsed NF3 + H2 Chemical Laser Using a Model Which Includes Rotational Relaxation and Semi-Classical Laser Equations,” Technical Report UCRL 51931, Lawrence Livermore Laboratory, University of California/Livermore, 1Sept.1975.
  4. J. Moreno, “Computer Model for the H2 + F2 Super Radiant Laser,” AIAA paper 75-36, Thirteenth Aerospace Sciences Meeting, Pasadena, Calif., 20–22 Jan. 1975.
  5. R. J. Hall, IEEE J. Quantum Electron. QE-12, 453 (1976). [CrossRef]
  6. L. H. Sentman, Appl. Opt. 15, 744 (1976); J. Chem. Phys. 62, 3523 (1975). [CrossRef]
  7. J. G. Skifstad, C. M. Chao, Appl. Opt. 14, 1713 (1975). [CrossRef] [PubMed]
  8. A. Ben-Shaul, K. L. Kompa, U. Schmailzl, J. Chem. Phys. 65, 1711 (1976). [CrossRef]
  9. R. F. Deutsch, Appl. Phys. Lett. 11, 18 (1967). [CrossRef]
  10. E. R. Sirkin, E. Cuellar, G. C. Pimentel, “Laser emission between high rotational states of HX resulting from photoelimination of halogenated olefins,” presented at the Fifth Conference of Chemical and Molecular Lasers, St. Louis, Mo., 18–20 Apr. 1977.
  11. N. Skribanowitz, I. P. Herman, R. M. Osgood, M. S. Feld, A. Javan, Appl. Phys. Lett. 20, 428 (1972). [CrossRef]
  12. H. Chen, R. L. Taylor, J. Wilson, P. Lewis, W. Fyfe, J. Chem. Phys. 61, 306 (1974). [CrossRef]
  13. D. P. Akitt, J. T. Yardley, IEEE J. Quantum Electron. QE-6, 113 (1972).
  14. E. Cuellar, J. H. Parker, G. C. Pimentel, J. Chem. Phys. 61, 422 (1974). [CrossRef]
  15. W. W. Rice, R. C. Oldenborg, IEEE J. Quantum Electron. QE-13, 86 (1977). [CrossRef]
  16. J. J. Hinchen, R. H. Hobbs, J. Appl. Phys. 50, 628 (1979). [CrossRef]
  17. R. W. F. Gross, J. F. Bott, Handbook of Chemical Lasers (Wiley, New York, 1976).
  18. R. L. Wilkins, J. Chem. Phys. 67, 5838 (1977). [CrossRef]
  19. R. L. Wilkins, M. A. Kwok, “Temperature Dependence of HF (v1 = 1) + HF (v2 = 0) Vibrational Relaxation,” Technical Report SAMSO-TR-78-76, Aerospace Corp., El Segundo, Calif. (Aug.1978).
  20. J. J. Hinchen, R. H. Hobbs, J. Chem. Phys. 65, 2732 (1976). [CrossRef]
  21. N. Cohen, A Review of Rate Coefficients for Reactions in the H2–F2 Laser System, Technical Report TR-0073 (3430)-9, Aerospace Corp., Los Angeles, Calif. (Nov.1972).
  22. J. J. T. Hough, Appl. Opt. 16, 2297 (1977). [CrossRef] [PubMed]
  23. R. E. Meredith, F. G. Smith, “Investigations of Fundamental Laser Processes Vol. II: Computation of Electric Dipole Matrix Elements for Hydrogen Fluoride and Deuterium Fluoride,” Technical Report 84130-39-T (II), Environmental Research Institute of Michigan, Ann Arbor (1971).
  24. L. F. Shampine, H. A. Watts, “Practical Solution of Ordinary Differential Equations by Runge-Kutta Methods,” SAND76-0585, Sandia Laboratories, Albuquerque, N. Mex. (Dec.1976).
  25. J. C. Polanyi, K. B. Woodall, J. Chem. Phys. 57, 1574 (1972). [CrossRef]
  26. J. C. Polanyi, J. J. Sloan, J. Chem. Phys. 57, 4988 (1972). [CrossRef]
  27. M. A. Kwok, Aerospace Corp.; private communication (1975).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited