OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 20, Iss. 16 — Aug. 15, 1981
  • pp: 2843–2851

Spectral approach to optical resonator theory

M. D. Feit and J. A. Fleck, Jr.  »View Author Affiliations

Applied Optics, Vol. 20, Issue 16, pp. 2843-2851 (1981)

View Full Text Article

Enhanced HTML    Acrobat PDF (921 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A new computational method for unloaded optical resonators is developed based on the discrete Fourier analysis of information generated by repeated iterations of the optical field corresponding to transits between reflectors. The method is a straightforward extension of the propagating beam method developed earlier for optical fibers for extracting modal properties from numerical solutions to the paraxial scalar wave equation. The method requires computation of a field correlation function, whose Fourier transform reveals the eigenmodes as resonant peaks. Analysis of the location and breadth of these peaks determines the resonator eigenvalues. When the eigenvalues are known, additional discrete Fourier transforms of the field are used to generate the mode eigenfunctions. This new method makes possible the unambiguous identification and accurate characterization of the entire spectrum of transverse resonator modes.

© 1981 Optical Society of America

Original Manuscript: March 9, 1981
Published: August 15, 1981

M. D. Feit and J. A. Fleck, "Spectral approach to optical resonator theory," Appl. Opt. 20, 2843-2851 (1981)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. G. Fox, T. Li, Bell Syst. Tech. J. 40, 453 (1961).
  2. H. K. V. Lotsch, Z. Naturforsch. Teil A: 20, 38 (1965).
  3. W. Streifer, J. Opt. Soc. Am. 55, 868 (1965). [CrossRef]
  4. P. F. Checcacci, A. Consortini, O. Scheggi, Proc. IEEE 54, 1329 (1966). [CrossRef]
  5. A. E. Siegman, R. Arrathoon, IEEE J. Quantum Electron. QE-3, 156 (1967). [CrossRef]
  6. R. L. Sanderson, W. Streifer, Appl. Opt. 8, 131 (1969). [CrossRef] [PubMed]
  7. A. E. Siegman, H. Y. Miller, Appl. Opt. 9, 2729 (1970). [CrossRef] [PubMed]
  8. E. A. Sziklas, A. E. Siegman, Appl. Opt. 14, 1874 (1975). [CrossRef] [PubMed]
  9. W. D. Murphy, M. L. Bernabe, Appl. Opt. 17, 2358 (1978). [CrossRef] [PubMed]
  10. A. E. Siegman, Ginzton Laboratory Report 3111 (1980).
  11. B. D. O'Neil, V. A. Hedin, J. L. Forgham, Air Force Weapons Laboratory Report AFWL-TR-78-15 (1978), p. 60.
  12. C. R. Wylie, Advanced Engineering Mathematics (McGraw-Hill, New York, 1966), p. 458.
  13. M. D. Feit, J. A. Fleck, Appl. Opt. 17, 3990 (1978). [CrossRef] [PubMed]
  14. M. D. Feit, J. A. Fleck, Appl. Opt. 19, 1154 (1980). [CrossRef] [PubMed]
  15. M. D. Feit, J. A. Fleck, Appl. Opt. 19, 2240 (1980). [CrossRef] [PubMed]
  16. M. D. Feit, J. A. Fleck, Appl. Opt. 19, 3140 (1980). [CrossRef] [PubMed]
  17. M. D. Feit, J. A. Fleck, Appl. Opt. 20, 848 (1981). [CrossRef] [PubMed]
  18. The notation used in this paper is designed to maintain consistency with earlier Refs. 13–17.
  19. J. A. Fleck, J. R. Morris, M. D. Feit, Appl. Phys. 10, 129 (1976). [CrossRef]
  20. P. R. Bevington, Data Reduction and Error Analysis for the Physical Sciences (McGraw-Hill, New York, 1969).
  21. Gibbs phenomena are known to result from truncating an infinite Fourier series that represents a discontinuous function. Fourier coefficients of the remaining untruncated terms, however, are not the discrete Fourier transform coefficients that would be computed from a finite number of values sampled from the same function. The latter would at least allow the correct function values to be recovered at the sampling points. For numerical comparisons of the effects of aperture apodization see Ref. 19.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited