Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Optogalvanic resonance detection of pulsed dye laser atomic absorption

Not Accessible

Your library or personal account may give you access

Abstract

Resonance detection and quantification of atomic absorption have been demonstrated for Na, Cu, and Li using an optogalvanic effect. In this experiment, a pulsed dye laser tuned to an absorption transition of the analyte atom (i.e., the element to be determined) was directed through the analyte atomic vapor produced in a flame into a commercial hollow cathode lamp containing the element of interest. The optogalvanic signal was monitored and related to the analyte concentration in the flame. Detection limits were obtained for Na, Cu, and Li, the behavior of the sodium hollow cathode lamp was characterized, and future applications are suggested.

© 1981 Optical Society of America

Full Article  |  PDF Article
More Like This
Optogalvanic effect as a detector for intracavity atomic absorption in a cw dye laser

Edward F. Zalewski, Richard A. Keller, and Charles T. Apel
Appl. Opt. 20(9) 1584-1587 (1981)

Optogalvanic effect in a hollow cathode discharge with nonlaser sources

Charles T. Apel, Richard A. Keller, Edward F. Zalewski, and Rolf Engleman
Appl. Opt. 21(8) 1465-1467 (1982)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved