OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 20, Iss. 19 — Oct. 1, 1981
  • pp: 3292–3313

Imaging and target detection with a heterodyne-reception optical radar

J. H. Shapiro, B. A. Capron, and R. C. Harney  »View Author Affiliations


Applied Optics, Vol. 20, Issue 19, pp. 3292-3313 (1981)
http://dx.doi.org/10.1364/AO.20.003292


View Full Text Article

Enhanced HTML    Acrobat PDF (3688 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A mathematical system model for a compact heterodyne-reception infrared radar is developed. This model incorporates the statistical effects of propagation through atmospheric turbulence, target speckle and glint, and heterodyne-reception shot noise. It is used to find the image signal-to-noise ratio of a matched-filter envelope–detector receiver and the target detection probability of the optimum likelihood ratio processor. For realistic parameter values it is shown that turbulence-induced beam spreading and coherence loss may be neglected. Target speckle and atmospheric scintillation, however, present serious limitations on single-frame imaging and target-detection performance. Experimental turbulence strength measurements are reviewed, and selected results are used in sample performance calculations for a realistic infrared radar.

© 1981 Optical Society of America

History
Original Manuscript: February 9, 1981
Published: October 1, 1981

Citation
J. H. Shapiro, B. A. Capron, and R. C. Harney, "Imaging and target detection with a heterodyne-reception optical radar," Appl. Opt. 20, 3292-3313 (1981)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-20-19-3292


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. P. Modica, H. Kleiman, “Statistics of Global IR Atmospheric Transmission,” Project Report TT-7, Lincoln Laboratory, MIT (Mar.1976).
  2. R. J. Becherer, “System Design Study for Infrared Airborne Radar (IRAR),” Technical Note 1977-29, Lincoln Laboratory, MIT (Oct.1977).
  3. R. J. Hull, S. Marcus, “A Tactical 10.6 μm Imaging Radar,” in Proceedings, 1978 National Aerospace and Electronics Conference (IEEE, Dayton, Ohio, 1978), p. 662.
  4. R. C. Harney, “Conceptual Design of a Multifunction Infrared Radar for the Tactical Aircraft Ground Attack Scenario,” Project Report TST-25, Lincoln Laboratory, MIT (Aug.1978).
  5. R. C. Harney, R. J. Hull, “Compact Infrared Radar Technology,” Proc. Soc. Photo-Opt. Instrum. Eng. 227, 162 (1980).
  6. R. C. Harney, “Design Considerations for the Infrared Airborne Radar (IRAR) MTI Subsystem,” Project Report TST-26, Lincoln Laboratory, MIT (July1980).
  7. R. C. Harney, “Infrared Airborne Radar,” EASCON ’80 Record (IEEE, Washington, D.C., 1980), pp. 462–471.
  8. The analysis will also apply to a cw scanning transmitter for which the pixel dwell time is short compared to the atmospheric coherence time.
  9. R. M. Gagliardi, S. Karp, Optical Communications (Wiley, New York, 1976), Chap. 6.
  10. By assuming hL to be time independent we are saying that both tp and 2L/c are less than the atmospheric coherence time (which is typically 1 msec).
  11. R. L. Fante, Proc. IEEE 63, 1669 (1975). [CrossRef]
  12. J. H. Shapiro, “Imaging and Optical Communication Through Atmospheric Turbulence,” in Laser Beam Propagation in the Atmosphere, J. W. Strohbehn, Ed. (Springer, Berlin, 1978). [CrossRef]
  13. J. H. Shapiro, J. Opt. Soc. Am. 61, 492 (1971). [CrossRef]
  14. J. H. Shapiro, IEEE Trans. Commun. Technol. COM-19, 410 (1971). [CrossRef]
  15. J. H. Shapiro, J. Opt. Soc. Am. 65, 65 (1975). [CrossRef]
  16. J. H. Shapiro, J. Opt. Soc. Am. 66, 460 (1976). [CrossRef]
  17. We are assuming, for simplicity, a stationary target. A moving target will impart a Doppler frequency shift to the reflected field. Our analysis can easily be extended to include this case.
  18. A. E. Siegman, Proc. IEEE 54, 1350 (1966). [CrossRef]
  19. Target Signature Analysis Center: Data Compilation, Eleventh Supplement: Vol. 1, Bidirectional Reflectance: Definition, Discussion, and Utilization; and Vol. 2, Bidirectional Reflectance: Graphic Data, AFAL-TR-72-226 (1972).
  20. R. S. Lawrence, J. W. Strohbehn, Proc. IEEE 58, 1523 (1970). [CrossRef]
  21. E. Brookner, IEEE Trans. Commun. Technol. COM-18, 396 (1970). [CrossRef]
  22. J. W. Strohbehn, Ed., Laser Beam Propagation in the Atmosphere (Springer, Berlin, 1978). [CrossRef]
  23. H. S. Lin, “Communication Model for the Turbulent Atmosphere,” Ph.D. Thesis, Case Western Reserve U., Cleveland, Ohio, Aug.1973.
  24. R. F. Lutomirski, H. T. Yura, Appl. Opt. 10, 1652 (1971). [CrossRef] [PubMed]
  25. H. T. Yura, Appl. Opt. 11, 1399 (1972). [CrossRef] [PubMed]
  26. A. Kon, V. Feizulin, Radiophys. Quantum Electon. 13, 51 (1970). [CrossRef]
  27. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, New York, 1968), Chaps. 3 and 4.
  28. We have included an absorption term in (2.3) that is not usually shown in the turbulence literature. This term must be included for a realistic treatment of 10.6-μm propagation, as clear weather absorption at this wavelength is not entirely negligible. Moreover, in bad weather conditions a large portion of the extinction encountered at 10.6 μm is due to absorption. Hence the absorption term in (2.3) will be used in what follows to account for weather-dependent attenuation.
  29. Strictly speaking we should also require d to be less than the log-amplitude coherence length. When d ≪ ρ0, however, the approximations hold as stated.
  30. The ϕ(ρ¯′,0¯) term in Eqs. (2.12) and (2.14) is a target plane phase perturbation which can affect the directionality of a glint target return (see below).
  31. J. C. Dainty, Ed., Laser Speckle and Related Phenomena (Springer, Berlin, 1975).
  32. P. Beckmann, A. Spizzichino, The Scattering of Electromagnetic Waves from Rough Surfaces (Pergamon, Oxford, 1963).
  33. Special issue on Speckle in Optics, J. Opt. Soc. Am. 66, 1145–1313 (1976).
  34. R. L. Mitchell, Proc. IEEE 62, 754 (1974). [CrossRef]
  35. M. Skolnik, Ed., Radar Handbook (McGraw-Hill, New York, 1970).
  36. E. Brookner, Ed., Radar Technology (Artech, Dedham, 1977).
  37. It would be somewhat more general to allow for locally ellipsoidal surfaces. We shall not do so as (3.2) is sufficient for the physical arguments needed here.
  38. J. W. Goodman, Proc. IEEE 53, 1688 (1965). [CrossRef]
  39. D. L. Fried, J. Opt. Soc. Am. 66, 1150 (1976). [CrossRef]
  40. H. L. Van Trees, Detection, Estimation and Modulation Theory, Part 3 (Wiley, New York, 1971), Chap. 13.
  41. J. H. Shapiro, “Imaging and Target Detection with a Heterodyne-Reception Optical Radar,” Project Report TST-24, Lincoln Laboratory, MIT (Oct.1978).
  42. R. L. Mitchell, J. Opt. Soc. Am. 58, 1267 (1968). [CrossRef]
  43. B. K. Levitt, “Detector Statistics for Optical Communication Through the Turbulent Atmosphere,” Quarterly Progress Report 99, Research Lab. Electron., MIT (Oct.1970), pp. 114–123.
  44. D. L. Fried, J. Opt. Soc. Am. 57, 169 (1967). [CrossRef]
  45. H. L. Van Trees, Detection, Estimation, and Modulation Theory, Part I (Wiley, New York, 1968), Chap. 2.
  46. H. L. Van Trees, Detection, Estimation, and Modulation Theory, Part I (Wiley, New York, 1968), Chap. 4.
  47. J. Marcum, IEEE Trans. Inf. Theory IT-6, 59 (1960). [CrossRef]
  48. J. Marcum, “Table of Q-Functions,” Rand Corp. Report RM-339 (1Jan.1950).
  49. B. A. Capron, R. C. Harney, J. H. Shapiro, “Turbulence Effects on the Receiver Operating Characteristics of a Heterodyne-Reception Optical Radar,” Project Report TST-33, Lincoln Laboratory, MIT (July1979).
  50. S. F. Clifford, “The Classical Theory of Wave Propagation in a Turbulent Medium,” in Laser Beam Propagation in the Atmosphere, J. W. Strohbehn, Ed. (Springer, Berlin, 1978). [CrossRef]
  51. R. E. Hufnagel, “Propagation Through Atmospheric Turbulence,” in The Infrared Handbook, W. L. Wolfe, G. J. Zissis, Eds. (Environmental Research Institute of Michigan, Ann Arbor, 1979), Chap. 6.
  52. M. A. Kallistratova, D. F. Timanovskiy, Atmos. Ocean Phys. 7, 46 (1971).
  53. W. D. Neff, “Quantitative Evaluation of Acoustic Echoes from the Planetary Boundary Layer,” Technical Report ERL 322-WPL 38, National Oceanic and Atmospheric Administration (June1975).
  54. J. L. Spencer, “Long-Term Statistics of Atmospheric Turbulence Near the Ground,” Report RADC-TR-78-182, Rome Air Development Center (Aug.1978).
  55. J. C. Wyngaard, Y. Izumi, S. A. Collins, J. Opt. Soc. Am. 61, 1646 (1971). [CrossRef]
  56. A. W. Cooper, E. C. Crittenden, A. F. Schroeder, in Digest of Topical Meeting on Optical Propagation Through Turbulence (Optical Society of America, Washington, D.C., 1974), paper WB4.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited