Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Photobleaching effects in optical fiber waveguides

Not Accessible

Your library or personal account may give you access

Abstract

The effect of optical signal intensity at the wavelength of system operation (0.85 μm) on the recovery of the radiation-induced attenuation in optical fiber waveguides following exposure to a 3700-rad dose of ionizing radiation has been investigated. Photobleaching has been observed in both pure and doped silica core fibers, although the effect is more pronounced in the former.

© 1981 Optical Society of America

Full Article  |  PDF Article
More Like This
Effect of low dose rate irradiation on doped silica core optical fibers

E. Joseph Friebele, Charles G. Askins, and Michael E. Gingerich
Appl. Opt. 23(23) 4202-4208 (1984)

Radiation damage in single-mode optical-fiber waveguides

E. J. Friebele, K. J. Long, and M. E. Gingerich
Appl. Opt. 22(11) 1754-1757 (1983)

Radiation damage of optical fiber waveguides at long wavelengths

E. J. Friebele, M. E. Gingerich, and K. J. Long
Appl. Opt. 21(3) 547-553 (1982)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.