OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 20, Iss. 2 — Jan. 15, 1981
  • pp: 259–263

Generalized Lorentzian approximations for the Voigt line shape

Pablo Martin and Julio Puerta  »View Author Affiliations

Applied Optics, Vol. 20, Issue 2, pp. 259-263 (1981)

View Full Text Article

Enhanced HTML    Acrobat PDF (499 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The object of the work reported in this paper was to find a simple and easy to calculate approximation to the Voigt function using the Padé method. To do this we calculated the multipole approximation to the complex function as the error function or as the plasma dispersion function. This generalized Lorentzian approximation can be used instead of the exact function in experiments that do not require great accuracy.

© 1981 Optical Society of America

Original Manuscript: August 21, 1980
Published: January 15, 1981

Pablo Martin and Julio Puerta, "Generalized Lorentzian approximations for the Voigt line shape," Appl. Opt. 20, 259-263 (1981)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Mitchell, M. Zemansky, Resonance Radiation and Excited Atoms (Cambridge U. P., London, 1971), pp. 93–103.
  2. Z. Kucerovsky, E. Brannen, D. G. Rumbold, W. J. Sarjeant, Appl. Opt. 12, 226 (1973). [CrossRef] [PubMed]
  3. U. List, “Druckabhangigkeit der Absorption von CO-Laser-Linien durch NO,” Thesis, Institut für Angewandte Physik, Universitat Bonn, Feb.1976.
  4. M. W. Zemansky, Phys. Rev. 36, 219 (1930). [CrossRef]
  5. A. Reichel, J. Quant. Spectrosc. Radiat. Transfer 8, 1601 (1968). [CrossRef]
  6. H. A. Farach, H. Teitlbaum, Can. J. Phys. 45, 2913 (1967). [CrossRef]
  7. J. F. Kielkopf, J. Opt. Soc. Am. 63, 987 (1973). [CrossRef]
  8. G. K. Wertheim, M. A. Butler, K. W. West, D. N. Buchanan, Rev. Sci. Instrum. 45, 1369 (1974). [CrossRef]
  9. P. Martín, M. A. González, Phys. Fluids 22, 1413 (1979). [CrossRef]
  10. P. Martín, G. Donoso, J. Zamudio-Cristi, J. Math. Phys. 21, 280 (1980). [CrossRef]
  11. M. Abramowitz, I. A. Stegun, Eds., Handbook of Mathematical Functions (Dover, New York, 1972), pp. 296–328.
  12. B. D. Fried, S. Conte, The Plasma Dispersion Function (Academic, New York, 1961).
  13. P. Martín, J. Zamudio-Cristi, G. Donoso, J. Math. Phys. 21, 1332 (May1980). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited