OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 20, Iss. 7 — Apr. 1, 1981
  • pp: 1254–1263

Determination of optical constants of absorbing materials using transmission and reflection of thin films on partially metallized substrates: analysis of the new (T,Rm) technique

A. Hjortsberg  »View Author Affiliations


Applied Optics, Vol. 20, Issue 7, pp. 1254-1263 (1981)
http://dx.doi.org/10.1364/AO.20.001254


View Full Text Article

Enhanced HTML    Acrobat PDF (1510 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A new accurate technique for determining the optical constants of thin absorbing films is presented. The configuration used includes a conventional spectrophotometer and a transparent substrate, half of which is covered with an opaque highly reflecting metal layer prior to the deposition of the film to be studied. The normal incidence transmission T of the thin film on the transparent substrate is then combined with a measurement of the near normal reflection Rm of the same film on the metal covered part of the substrate. The combination (T,Rm) yields an accurate and experimentally simple technique for determining the optical constants of thin films. A detailed evaluation of the accuracy of the extracted optical constants n and k of the thin film is obtained from numerical computations using realistic assumptions of various experimental uncertainties. Comparison with conventional techniques shows a greatly improved accuracy of the new technique.

© 1981 Optical Society of America

History
Original Manuscript: October 17, 1980
Published: April 1, 1981

Citation
A. Hjortsberg, "Determination of optical constants of absorbing materials using transmission and reflection of thin films on partially metallized substrates: analysis of the new (T,Rm) technique," Appl. Opt. 20, 1254-1263 (1981)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-20-7-1254


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. H. Mayer, Physik dünner Schichten (Wissenschaftliche, Stuttgart, 1950).
  2. O. S. Heavens, Optical Properties of Thin Solid Films (Butterworths, London, 1950).
  3. P. H. Berning, in Physics of Thin Films, G. Hass, Ed. (Academic, New York, 1963), Vol. 1, p. 6.
  4. E. E. Bell, in Encyclopedia of Physics, L. Genzel, Ed. (Springer, Berlin, 1967), Vol. 25/2a, pp. 1–58.
  5. O. S. Heavens, in Physics of Thin Films, G. Hass, R. E. Thun, Eds. (Academic, New York, 1964), Vol. 2, p. 193.
  6. H. E. Bennett, J. M. Bennett, in Physics of Thin Films, G. Hass, R. E. Thun, Eds. (Academic, New York, 1967), Vol. 4, pp. 1–96.
  7. F. Abeles, in Physics of Thin Films, M. H. Francombe, R. W. Hoffman, Eds. (Academic, New York, 1971), Vol. 6, pp. 151–204.
  8. W. R. Hunter, J. Opt. Soc. Am. 55, 1197 (1965). [CrossRef]
  9. J. M. Bennett, M. J. Booty, Appl. Opt. 5, 41 (1966). [CrossRef] [PubMed]
  10. F. Abeles, M. L. Theye, Surf. Sci. 5, 32 (1966). [CrossRef]
  11. L. Ward, A. Nag, Br. J. Appl. Phys. 18, 277 (1967). [CrossRef]
  12. L. Ward, A. Nag, Br. J. Appl. Phys. 18, 1629 (1967). [CrossRef]
  13. P. O. Nilsson, Appl. Opt. 7, 435 (1968). [CrossRef] [PubMed]
  14. K. W. Johnson, E. E. Bell, Phys. Rev. 187, 1044 (1969). [CrossRef]
  15. J. E. Nestell, R. W. Christy, Appl. Opt. 11, 643 (1972). [CrossRef] [PubMed]
  16. R. F. Miller, A. J. Taylor, J. Phys. D: 4, 1419 (1971). [CrossRef]
  17. R. E. Denton, R. D. Campbell, S. G. Tomlin, J. Phys. D: 5, 852 (1972). [CrossRef]
  18. W. R. Hunter, G. Hass, J. Opt. Soc. Am. 64, 429 (1974). [CrossRef]
  19. R. D. Bringans, J. Phys. D: 10, 1855 (1977). [CrossRef]
  20. T. J. Parker, W. G. Chambers, J. E. Ford, C. L. Mok, Infrared Phys. 18, 571 (1978). [CrossRef]
  21. R. Carey, B. W. J. Thomas, D. M. Newman, Thin Solid Films 66, 139 (1980). [CrossRef]
  22. F. T. Ritchie, G. L. Harding, Thin Solid Films 57, 315 (1979), extracted the optical constants of Fe-C films from a regression of the thin film transmission and reflection on glass combined with the reflection on gold. This in fact amounts to a combination of the (T,R) and (T,Rm) methods, although no evaluation or analysis of the method was attempted in this case). [CrossRef]
  23. G. Hass, W. R. Hunter, in Physics of Thin Films, G. Hass, M. H. Francombe, Eds. (Academic, New York, 1978), Vol. 10.
  24. C. G. Granqvist, A. Hjortsberg, Appl. Phys. Lett. 36, 139 (1980); A. Hjortsberg, C. G. Granqvist, Appl. Opt. 15, 1694 (1980). [CrossRef]
  25. A. Hjortsberg, Thin Solid Films 69, L15 (1980). [CrossRef]
  26. R. M. A. Azzam, N. M. Bashara, Ellipsometry and Polarized Light (North-Holland, Amsterdam, 1977).
  27. D. E. Aspnes, Opt. Commun. 8, 222 (1973). [CrossRef]
  28. F. Stern, in Solid State Physics, F. Seitz, D. Turnbull, Eds. (Academic, New York, 1963), Vol. 15, p. 300. [CrossRef]
  29. J. J. Chamberlain, J. E. Gibbs, H. A. Gebbie, Nature London 198, 874 (1963); Infrared Phys. 9, 185 (1969). [CrossRef]
  30. E. E. Bell, Infrared Phys. 6, 57 (1966). [CrossRef]
  31. E. E. Russel, E. E. Bell, Infrared Phys. 6, 75 (1966). [CrossRef]
  32. C. Bazin, C. R. Acad. Sci. 260, 83 (1965).
  33. D. E. Gray, Ed., American Institute of Physics Handbook (McGraw-Hill, New York, 1972).
  34. Landolt-Bernstein, Eigenschaften der Materie in ihren Aggregationszustanden, 8 Teil, Optische Konstanten (Springer, Berlin, 1962).
  35. K. H. Behrndt, in Physics of Thin Films, G. Hass, R. E. Thun, Eds. (Academic, New York, 1966), Vol. 3, p. 1.
  36. H. Kiessig, Z. Angew. Phys. 22, 406 (1967).
  37. See, for example, the Alpha-Step Profiler, Tencor Instruments, 2426 Charleston Road, Mountain View, Calif. 94043.
  38. A. Vasicek, Optics of Thin Films (North-Holland, Amsterdam, 1960).
  39. G. Hass, J. E. Waylonis, J. Opt. Soc. Am. 51, 719 (1961). [CrossRef]
  40. G. R. Fowles, Introduction to Modern Optics (Holt, Rinehart & Winston, New York, 1968), p. 95.
  41. M. Born, E. Wolf, Principles of Optics (Macmillan, New York, 1964).
  42. E. A. Bondar, Yu. A. Kulyupin, N. N. Popovich, Thin Solid Films 55, 201 (1978). [CrossRef]
  43. The continuity of the tangential electric field at the metal–thin film interface ensures that the field amplitude is small at the interface, in the film as well as the metal, for normal incidence reflection).
  44. W. A. Pliskin, H. S. Lehman, J. Electrochem. Soc. 112, 1013 (1965). [CrossRef]
  45. H. R. Philipp, J. Phys. Chem. Solids 32, 1935 (1971); J. Non-Cryst. Solids 8–10, 627 (1972). [CrossRef]
  46. K. Hübner, Phys. Status Solidi A: 42, 50 (1977). [CrossRef]
  47. D. E. Aspnes, J. B. Theeten, J. Appl. Phys. 50, 4928 (1979). [CrossRef]
  48. G. Hass, C. D. Salzberg, J. Opt. Soc. Am. 44, 181 (1954). [CrossRef]
  49. See, for example, B. O. Seraphin, “Solar Energy Conversion,” in Topics in Applied Physics, B. O. Seraphin, Ed. (Springer, New York, 1979); A. J. Siewers, in Topics in Applied Physics, B. O. Seraphin, Ed. (Springer, New York, 1979). [CrossRef]
  50. R. E. Hahn, B. O. Seraphin, in Physics of Thin Films, G. Hass, M. H. Francombe, Eds. (Academic, New York, 1978), Vol. 10, p. 1.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited