OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 20, Iss. 9 — May. 1, 1981
  • pp: 1532–1536

General wavelength dependence of imaging through the atmosphere

N. S. Kopeika  »View Author Affiliations


Applied Optics, Vol. 20, Issue 9, pp. 1532-1536 (1981)
http://dx.doi.org/10.1364/AO.20.001532


View Full Text Article

Enhanced HTML    Acrobat PDF (656 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Atmospheric MTF formulations are restated to include contrast reduction by thermal backgrounds received by the imaging system. These backgrounds should be of significance for infrared imaging through the atmosphere. Absorption windows such as 2.0–2.4 and 3.1–4.1-μm wavelengths, which contain minimum atmospheric background, are suggested as usually permitting the best resolution for long range atmospheric imaging of apparently bright objects despite the fact that received object beam radiation may even peak in the 8–13-μm window. The 8–13-μm window is generally better for thermal imaging of objects whose temperatures are close to those of the atmosphere.

© 1981 Optical Society of America

History
Original Manuscript: June 23, 1979
Revised Manuscript: December 29, 1980
Published: May 1, 1981

Citation
N. S. Kopeika, "General wavelength dependence of imaging through the atmosphere," Appl. Opt. 20, 1532-1536 (1981)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-20-9-1532


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. E. Hufnagel, N. R. Stanley, J. Opt. Soc. Am. 54, 52 (1964). [CrossRef]
  2. D. L. Fried, J. Opt. Soc. Am. 56, 1372 (1966). [CrossRef]
  3. R. W. Boyd, J. Opt. Soc. Am. 68, 877 (1978). [CrossRef]
  4. E. C. Crittenden, A. W. Cooper, E. A. Milne, G. W. Rodeback, S. H. Kalmbach, R. L. Armstead, Proc. Soc. Photo-Opt. Instrum. Eng. 142, 130 (1978).
  5. R. J. Hill, S. F. Clifford, J. Opt. Soc. Am. 68, 892 (1978). [CrossRef]
  6. S. Q. Duntley, J. Opt. Soc. Am. 38, 179 (1948). [CrossRef]
  7. N. Jensen, Optical and Photographic Reconnaissance System (Wiley, New York, 1968), p. 44.
  8. N. S. Kopeika, Appl. Opt. 16, 2422 (1977); Appl. Opt. 17, 1162 (1978). [CrossRef] [PubMed]
  9. R. F. Lutomirski, Appl. Opt. 17, 3915 (1978). [CrossRef] [PubMed]
  10. N. S. Kopeika, J. Bordogna, Proc. IEEE 58, 1571 (1970). [CrossRef]
  11. E. E. Bell, L. Eisner, J. Young, R. A. Oetjen, J. Opt. Soc. Am. 50, 1313 (1960). [CrossRef]
  12. H. S. Stewart, R. F. Hopfield, “Atmospheric Effects,” in Applied Optics and Optical Engineering, R. Kingslake, Ed. (Academic, New York, 1965), Vol. 1, pp. 131–140.
  13. R. A. McClatchey, R. W. Fenn, J. E. A. Selby, F. E. Volz, J. S. Garing, “Optical Properties of the Atmosphere,” in Handbook of Optics, W. G. Driscoll, W. Vaughan, Eds. (McGraw-Hill, New York, 1978), Chap. 14, Figs. 30 and 31.
  14. N. Jensen, Ref. 7, pp. 96–100.
  15. W. J. Smith, Modern Optical Engineering (McGraw-Hill, New York, 1966), p. 311.
  16. R. F. Lutomirski, H. T. Yura, Appl. Opt. 13, 431 (1974). [CrossRef] [PubMed]
  17. H. P. Lavin, “System Analysis,” in Photoelectronic Imaging Devices, L. M. Biberman, S. Nudelman, Eds. (Plenum, New York, 1971), Vol. 1, pp. 333–374. [CrossRef]
  18. C. Roddier, J. Opt. Soc. Am. 66, 478 (1976). [CrossRef]
  19. R. C. Ramsey, Appl. Opt. 1, 465 (1962). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited