OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 20, Iss. 9 — May. 1, 1981
  • pp: 1571–1578

Saturation of anomalous dispersion in cw HF lasers

P. W. Milonni  »View Author Affiliations


Applied Optics, Vol. 20, Issue 9, pp. 1571-1578 (1981)
http://dx.doi.org/10.1364/AO.20.001571


View Full Text Article

Enhanced HTML    Acrobat PDF (928 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The high gain and narrow linewidth of HF chemical lasers lead to a large resonant component of the refractive index. Calculations indicate that this (unsaturated) anomalous dispersion is at least as large as the nonresonant Gladstone-Dale dispersion. Possible deleterious effects of anomalous dispersion are briefly reviewed. These effects in a high-power device are mitigated by multimode operation, which acts to saturate homogeneously the anomalous dispersion at intensities considerably lower than those required for power broadening of the inhomogeneous Doppler line shape over to a homogeneous line.

© 1981 Optical Society of America

History
Original Manuscript: May 5, 1980
Published: May 1, 1981

Citation
P. W. Milonni, "Saturation of anomalous dispersion in cw HF lasers," Appl. Opt. 20, 1571-1578 (1981)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-20-9-1571


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. The effects of the nonresonant dispersion are well understood and are not difficult to include in theoretical investigations. See, for example, P. W. Milonni, A. H. Paxton, J. Appl. Phys. 49, 1012 (1978). [CrossRef]
  2. L. Casperson, A. Yariv, Appl. Phys. Lett. 17, 259 (1970). [CrossRef]
  3. See, for example, D. H. Close, Phys. Rev. 153, 360 (1967). The equations in this paper are often used in discussions of anomalous dispersion. [CrossRef]
  4. D. L. Bullock, paper delivered at Tri-Service Chemical Laser Symposium, Air Force Weapons Laboratory, 28–30 Aug. 1979.
  5. T. Kan, G. J. Wolga, IEEE J. Quantum Electron. QE-7, 141 (1971).
  6. H. Mirels, AIAA J. 17, 478 (1979). [CrossRef]
  7. S. Stenholm, “The Semiclassical Theory of the Gas Laser,” in Progress in Quantum Electronics, J. H. Sanders, K. W. H. Stevens, Eds., (Pergamon, Oxford, 1971), pp. 187–271.
  8. W. W. Rigrod, J. Appl. Phys. 36, 2487 (1965). [CrossRef]
  9. J. C. Polanyi, K. B. Woodall, J. Chem. Phys. 56, 1563 (1972). [CrossRef]
  10. M. Abramowitz, I. A. Stegun, Handbook of Mathematical Functions (U.S. GPO, Washington, D.C., 1964), pp. 297–304, 325–328.
  11. W. E. Lamb, Phys. Rev. 134, 1429 (1964). [CrossRef]
  12. L. Allen, J. H. Eberly, Optical Resonance and Two-Level Atoms (Wiley, New York, 1975).
  13. See, for example, R. Ladenburg, H. Kopfermann, Nature Paris 122, 438 (1928). [CrossRef]
  14. W. R. Bennett, Appl. Opt. Suppl. 1, 24 (1962). [CrossRef]
  15. L. W. Casperson, A. Yariv, Appl. Opt. 11, 462 (1972). [CrossRef] [PubMed]
  16. R. E. Meredith, T. S. Chang, F. G. Smith, D. R. Woods, SAI-73-004-AA.
  17. J. A. Glaze, Appl. Phys. Lett. 23, 300 (1973). [CrossRef]
  18. G. Emanuel, in Handbook of Chemical Lasers, R. W. F. Gross, J. F. Bott, Eds. (Wiley, New York, 1976), pp. 469–549.
  19. J. Jarecki, R. Herman, J. Quant. Spectrosc. Radiat. Transfer 15, 707 (1975). [CrossRef]
  20. L. Casperson, IEEE J. Quantum Electron. QE-9, 250 (1973). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited