OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 20, Iss. 9 — May. 1, 1981
  • pp: 1611–1620

Mode properties of a strip confocal unstable resonator with saturable gain

M. J. Smith  »View Author Affiliations

Applied Optics, Vol. 20, Issue 9, pp. 1611-1620 (1981)

View Full Text Article

Enhanced HTML    Acrobat PDF (946 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The asymptotic analysis technique for calculating the modes of unstable strip resonators is extended to include the effects of a saturable but otherwise uniform gain. Utilizing simultaneous forward and backward (in time) propagation and the Rigrod gain formula, an iterative algorithm is employed to find the intensities inside a resonator. In contrast with Fox-Li type iterations, this scheme converges rapidly and gives all the higher modes. Mode properties at critical Fresnel numbers are examined as a function of gain saturation, which is seen to reduce mode degeneracy.

© 1981 Optical Society of America

Original Manuscript: December 6, 1980
Published: May 1, 1981

M. J. Smith, "Mode properties of a strip confocal unstable resonator with saturable gain," Appl. Opt. 20, 1611-1620 (1981)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. E. Siegman, Proc. IEEE 53, 277 (1965). [CrossRef]
  2. A. Fox, T. Li, Bell Syst. Tech. J. 40, 453 (1966).
  3. W. Streiffer, IEEE J. Quantum Electron. QE-4, 229 (1968). [CrossRef]
  4. L. Bergstein, Appl. Opt. 7, 495 (1968). [CrossRef] [PubMed]
  5. L. Chen, L. Felsen, IEEE J. Quantum Electron. QE-9, 1102 (1973). [CrossRef]
  6. P. Horwitz, J. Opt. Soc. Am. 63, 1528 (1973). [CrossRef]
  7. G. Moore, R. McCarthy, J. Opt. Soc. Am. 67, 228 (1977). [CrossRef]
  8. G. Moore, R. McCarthy, J. Opt. Soc. Am. 67, 221 (1977). [CrossRef]
  9. M. M. Weiner, IEEE J. Quantum Electron. QE-13, 803 (1977). [CrossRef]
  10. M. M. Weiner, Appl. Opt. 18, 1828 (1979). The basic resonator equation is described in numerous papers, but this work is the only one to express it explicitly in terms of the effective Fresnel number. [CrossRef] [PubMed]
  11. From the waveguide theory of resonator analysis, e.g., G. Vinukurov, V. Lyubimov, I. Orlova, Opt. Spectrosk. 34, 427 (1973), the next to lowest-loss eigenvalue has a geometric optics asymptote of M−0.50 but is closer to M−0.25 for Feff’s less than 50 or so.
  12. M. Born, E. Wolf, Principles of Optics (Pergamon, New York, 1975), pp. 752–754.
  13. Y. Ananev, Sov. J. Quantum Electron. 5, 615 (1975). [CrossRef]
  14. W. Rigrod, J. Appl. Phys. 36, 2487 (1965). [CrossRef]
  15. This formula assumes no interference between forward and backward traveling waves. If such interference exists, the effect is to shift the overall value of intensity by a small amount. See G. P. Agrawal, M. Lax, J. Opt. Soc. Am. 69, 1717 (1979). [CrossRef]
  16. W. H. Louisell, M. Lax, G. P. Agrawal, H. W. Gatzke, Appl. Opt. 18, 2730 (1979). [CrossRef] [PubMed]
  17. E. A. Sziklas, A. E. Siegman, Appl. Opt. 14, 1874 (1975). The computer algorithm described in this paper is the archetype of a number of simulation codes in use today. [CrossRef] [PubMed]
  18. D. B. Rensch, A. N. Chester, Appl. Opt. 12, 997 (1973). [CrossRef] [PubMed]
  19. C. Santana, L. B. Felsen, Appl. Opt. 17, 2239 (1978). [CrossRef] [PubMed]
  20. G. McAllister, W. Steier, W. Lacina, IEEE J. Quantum Electron. QE-10, 346 (1974). [CrossRef]
  21. R. Butts, P. Avizonis, J. Opt. Soc. Am. 68, 1072 (1978). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited