OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 21, Iss. 13 — Jul. 1, 1982
  • pp: 2330–2338

Higher-order modes of phase conjugate resonators

Amos Hardy and Simon Hochhauser  »View Author Affiliations


Applied Optics, Vol. 21, Issue 13, pp. 2330-2338 (1982)
http://dx.doi.org/10.1364/AO.21.002330


View Full Text Article

Enhanced HTML    Acrobat PDF (1015 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A numerical analysis based on the Prony algorithm was carried out to find the higher-order modes of phase conjugate optical resonators with hard-edged apertures. The mode patterns are nearly Hermite-Gaussians even for unstable resonator configurations. This indicates that there is not a phase conjugate analog of conventional unstable resonators. The eigenvalues and the extent to which the phase fronts match the surface of the conventional mirror were also calculated for a variety of resonator parameters. When there is one limiting aperture in the resonator and all others (including the phase conjugating mirror) can be considered as unbound, the eigenvalues and phase matching parameter are scalable by the ratio g/N, where N is the Fresnel number of the aperture and g = 1 − L/R as in conventional resonator theory.

© 1982 Optical Society of America

History
Original Manuscript: January 7, 1982
Published: July 1, 1982

Citation
Amos Hardy and Simon Hochhauser, "Higher-order modes of phase conjugate resonators," Appl. Opt. 21, 2330-2338 (1982)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-21-13-2330


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. E. Siegman, H. Y. Miller, Appl. Opt. 9, 2729 (1970). [CrossRef] [PubMed]
  2. A. E. Siegman, “A Prony Algorithm for Fitting Exponential Factors or Extracting Matrix Eigenvalues from a Sequence of Complex Numbers,” Preprint Ginzton Laboratory Report 3111, Stanford U., Stanford, Calif. (Mar.1980).
  3. A. G. Fox, T. Li, IEEE J. Quantum Electron. QE-4, 460 (1968). [CrossRef]
  4. A. Consortini, F. Pasqualetti, Opt. Acta 20, 793 (1973). [CrossRef]
  5. P.-A. Belanger, A. Hardy, A. E. Siegman, Appl. Opt. 19, 602 (1980). [CrossRef] [PubMed]
  6. J. F. Lam, W. P. Brown, Opt. Lett. 5, 61 (1980). [CrossRef] [PubMed]
  7. P.-A. Belanger, A. Hardy, A. E. Siegman, Appl. Opt. 19, 479 (1980). [CrossRef] [PubMed]
  8. H. Kogelnik, T. Li, Appl. Opt. 5, 1550 (1966);J. A. Arnaud, Beam and Fiber Optics (Academic, New York, 1976), pp. 122–123, 175. [CrossRef] [PubMed]
  9. A. Hardy, P.-A. Belanger, A. E. Siegman, Appl. Opt. 21, 1121 (1982).
  10. A. Hardy, IEEE J. Quantum Electron. QE-17, 1581 (1981). [CrossRef]
  11. A. Hardy, S. Hochhauser, Appl. Opt. 21, 1118 (1982). [CrossRef] [PubMed]
  12. A. E. Siegman, P.-A. Belanger, A. Hardy, “Optical Resonators Using Phase-Conjugate Mirrors,” in Optical Phase Conjugation, R. A. Fisher, Ed. (Academic, New York, 1982).
  13. J. AuYeung, D. Fekete, D. M. Pepper, A. Yariv, IEEE J. Quantum Electron. QE-15, 1180 (1979). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited